scholarly journals Performance Evaluation of Multi Radio Integrated Navigation System under Navigation Warfare in M&S Software

2019 ◽  
Vol 94 ◽  
pp. 01008
Author(s):  
Heyone Kim ◽  
Jae Hoon Son ◽  
Sang Heon Oh ◽  
Hyoungmin So ◽  
Dong-Hwan Hwang

In this paper, a modelling and simulation software is designed in order to evaluate the performance of a multi radio integrated navigation system and the performance evaluation results are presented. The modelling and simulation software is divided into navigation algorithm module, navigation environment generation module, and graphic user interface module with performance evaluation algorithm. In order to show the validity of the design, the modelling and simulation software for GPS, KNSS, Loran-C, eLoran, and DME/VOR is implemented in C++ under Windows OS environment. Accuracy, integrity, continuity and availability are evaluated for the multi radio integrated navigation system in the modelling and simulation software. The performance evaluation results show that the designed modelling and simulation software can be effectively used for the performance evaluation of multi radio integrated navigation systems.

2019 ◽  
Vol 94 ◽  
pp. 01009
Author(s):  
Jae Hoon Son ◽  
Heyone Kim ◽  
Sang Heon Oh ◽  
Hyoungmin So ◽  
Dong-Hwan Hwang

A multi-thread based navigation algorithm module is designed in a multi radio integrated navigation system modeling and simulation software in order to efficiently use resources in the software platform of the modeling and simulation software. By adopting the multi-thread architecture, features of navigation algorithms and concurrency of the algorisms can be easily included in the navigation algorithm module. In order to show the usefulness of the multi thread based navigation algorithm module design, a navigation algorithm module in the multi-radio integrated navigation system for GPS, KNSS, Loran-C, eLoran and DME/VOR is implemented in C++ under the Windows operating system. The implementation results show that the thread based design can be useful in the development of multi radio integrated navigation systems.


Author(s):  

The schemes of navigation systems correction are considered. The operation mode of the aircraft during navigation is analyzed. An adaptive modification of the linear Kalman filter is used to correct the navigation information. An algorithm for predicting a correction signal based on a neural network in the event of a loss of a SNS correction signal is formed. Experimental results show the effectiveness of the algorithm. Keywords aircraft; inertial navigation system; satellite system; Kalman filter; neural networks; genetic algorithm


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 188 ◽  
Author(s):  
Heyone Kim ◽  
Junhak Lee ◽  
Sang Heon Oh ◽  
Hyoungmin So ◽  
Dong-Hwan Hwang

To avoid degradation of navigation performance in the navigation warfare environment, the multi-radio integrated navigation system can be used, in which all available radio navigation systems are integrated to back up Global Navigation Satellite System (GNSS) when the GNSS is not available. Before real-time multi-radio integrated navigation systems are deployed, time and cost can be saved when the modeling and simulation (M&S) software is used in the performance evaluation. When the multi-radio integrated navigation system M&S is comprised of independent function modules, it is easy to modify and/or to replace the function modules. In this paper, the M&S software design method was proposed for multi-radio integrated navigation systems as a GNSS backup under the navigation warfare. The M&S software in the proposed design method consists of a message broker and function modules. All the messages were transferred through the message broker in order to be exchanged between the function modules. The function modules in the M&S software were independently operated due to the message broker. A message broker-based M&S software was designed for a multi-radio integrated navigation system. In order to show the feasibility of the proposed design method, the M&S software was implemented for Global Positioning System (GPS), Korean Navigation Satellite System (KNSS), enhanced Long range navigation (eLoran), Loran-C, and Distance Measuring Equipment/Very high-frequency Omnidirectional Radio range (DME/VOR). The usefulness of the proposed design method was shown by checking the accuracy and availability of the GPS only navigation and the multi-radio integrated navigation system under the attack of jamming to GPS.


2013 ◽  
Vol 278-280 ◽  
pp. 1719-1722 ◽  
Author(s):  
Xiao Yu Zhang ◽  
Chun Lei Song

A new scheme of small integrated navigation system based on micro inertial measurement unit (MIMU), global position system (GPS) is presented. The characteristic of these sensors and the structure of system are introduced respectively. The TI high performance floating point DSP TMS320C6713B is used as core processor, which is designed to realize both the data collecting and the navigation calculating. According to the error models of inertial navigation system, an integrated navigation algorithm used Kalman filter is proposed to fuse the information from all of the sensors. The simulation test results show the feasibility of the system design.


2016 ◽  
Vol 70 (2) ◽  
pp. 291-308 ◽  
Author(s):  
Qiang Xiao ◽  
Huimin Fu ◽  
Zhihua Wang ◽  
Yongbo Zhang

Accurate navigation systems are required for future pinpoint Mars landing missions. A radio ranging augmented Inertial Measurement Unit (IMU) integrated navigation system concept is considered for the Mars entry navigation. The uncertain system parameters associated with the Three Degree-Of-Freedom (3-DOF) dynamic model, and the measurement systematic errors are considered. In order to improve entry navigation accuracy, this paper presents the Multiple Model Adaptive Rank Estimation (MMARE) filter of radio beacons/IMU integrated navigation system. 3-DOF simulation results show that the performances of the proposed navigation filter method, 70·39 m estimated altitude error and 15·74 m/s estimated velocity error, fulfill the need of future pinpoint Mars landing missions.


2000 ◽  
Vol 53 (3) ◽  
pp. 425-435
Author(s):  
A. Raffetti ◽  
F. Marangon ◽  
F. Zuccarelli

This paper was first presented at the NAV99/ILA28 Conference on ‘Loran-C, Satellite and Integrated Systems for the 21st Century’ held at Church House, Westminster, London from 1–3 November 1999.The introduction of modern navigation systems highlights the need for efficient tools to assess the possible impact of these systems on the safety levels currently associated with the operation of a ship. In recent years this has led to investigation of the advanced safety/risk assessment techniques already applied in other industrial sectors, with encouraging results. The scope of this paper is to show a quantified safety assessment methodology that can be applied while designing or retrofitting navigation systems. The methodology adopted is the result of the review of the IMO Formal Safety Assessment (FSA) technique and comprises the development of a functional analysis, a hazard identification analysis and a risk assessment. The paper provides details on a specific application of this model to an integrated navigation system. This application is included in the work performed under the ATOMOS II research project, partly funded by the DGVII Directorate of the European Commission within the 4th Framework Programme in the field of Maritime Transport.


2014 ◽  
Vol 68 (2) ◽  
pp. 308-326 ◽  
Author(s):  
Wenjie Zhao ◽  
Zhou Fang ◽  
Ping Li

This paper reports on a new navigation algorithm for fixed-wing Unmanned Aerial Vehicles (UAVs) to bridge Global Position System (GPS) outages, based on a common navigation system configuration. The ground velocity is obtained from wind-compensated airspeed, and a centripetal force model is introduced to estimate the motion acceleration. Compensated by this acceleration, the gravity vector can be extracted from the accelerometer measurement. Finally, fusing the information of the ground velocity, magnetic heading, barometric height, and gravity vector, the Integrated Navigation System (INS) is reconstructed, and an Extended Kalman Filter (EKF) is used to estimate INS errors. Hardware-in-loop simulation results show that compared with INS-only solutions, the proposed method effectively resists long-term drift of INS errors and significantly improves the accuracy for dynamic navigation during GPS outages.


2021 ◽  
Author(s):  
kai chen ◽  
Sen-sen PEI ◽  
Cheng-zhi ZENG ◽  
Gang DING

Abstract A tightly-coupled integrated navigation system (TCINS) for hypersonic vehicles is proposed when the satellite signals are disturbed. Firstly, the architecture of the integrated navigation system for the hypersonic vehicle is introduced. This system applies fiber SINS, BeiDou satellite receiver (BDS) and SOPC missile-born computer. Subsequently, the SINS mechanization for hypersonic vehicle is presented. The J2 model is employed for the normal gravity of the near space. An algorithm for updating the attitude, velocity and position is designed. State equations and measurement equations of SINS/BDS tightly-coupled integrated navigation for hypersonic vehicle are given, and a scheme of validity for satellite data is designed. Finally, the SINS/BDS tightly-coupled vehicle field tests and hardware-in-the-loop (HWIL) simulation tests are carried out. The vehicle field test and HWIL simulation results show that the heading angle error of tightly-coupled integrated navigation is within 0.2°, the pitch and roll angle errors are within 0.05°, the maximum velocity error is 0.3m/s, and the maximum position error is 10m.


2013 ◽  
Vol 347-350 ◽  
pp. 1544-1548
Author(s):  
Zi Yu Li ◽  
Yan Liu ◽  
Ping Zhu ◽  
Cheng Ying

In multi-sensor integrated navigation systems, when sub-systems are non-linear and with Gaussian noise, the federated Kalman filter commonly used generates large error or even failure when estimating the global fusion state. This paper, taking JIDS/SINS/GPS integrated navigation system as example, proposes a federated particle filter technology to solve problems above. This technology, combining the particle filter with the federated Kalman filter, can be applied to non-linear non-Gaussian integrated system. It is proved effective in information fusion algorithm by simulated application, where the navigation information gets well fused.


Sign in / Sign up

Export Citation Format

Share Document