scholarly journals Performance Analysis of Relative Positioning using GPS and BDS signals

2019 ◽  
Vol 94 ◽  
pp. 03005
Author(s):  
Jae Hee Noh ◽  
Sun Yong Lee ◽  
Deok Won Lim ◽  
Gwang Hee Jo ◽  
Jin Hyuk Lee ◽  
...  

In general, the satellite signal received by GNSS receivers has errors such as satellite clock error, orbit error, ionospheric delay and tropospheric delay. In environments where high positioning accuracy is required, these error factors can be eliminated by using relative positioning using code measurements with carrier phase measurements. If relative positioning is performed using carrier phase measurements, it is possible to have positioning accuracy of cm level. In this paper, we analyse the positioning accuracy of relative positioning using the L1 signal of GPS and BDS. For this study, we collect GPS and BDS signal using two low-cost receivers. We also designed a software-based platform to perform the relative positioning. Finally, we analyse relative positioning accuracy for GPS/BDS integrated system as well as relative positioning accuracy for GPS and BDS.

2019 ◽  
Vol 13 ◽  
pp. 174830181983304
Author(s):  
Hangshuai Ma ◽  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Chuanyi Li

The application of Beidou Satellite Navigation System (BDS) is developing rapidly. To satisfy the increasing demand for positioning performance, single-frequency precise point positioning (SFPPP) has been a focus in recent years. By introducing the SFPPP technique into the INS/BDS integrated system, higher navigation accuracy can be obtained. Cycle slip, which is caused by signal blockage during the measurement of the carrier phase, is a challenge for SFPPP application. In the INS/SFPPP-BDS integrated system, cycle slip can cause serious bias in BDS carrier phase measurements. In this paper, a new INS/SFBDS-PPP tightly coupled navigation system and a robust adaptive filtering method are proposed. Using a low-cost single-frequency receiver integrated with INS, an observation model was built based on the pseudo range and carrier phase by PPP preprocessing. The cycle slip was introduced into the state vector to improve the estimation precision. The test statistics, comprising the innovation and its covariance, were used to estimate the time at which cycle slip occurred and its amplitude to compensate for its effect on the observation. Finally, the proposed system model and algorithm are validated by simulation.


2021 ◽  
Author(s):  
Mahmoud Abd Rabbou

This dissertation develops a low-cost integrated navigation system, which integrates multi-constellation global navigation satellite system (GNSS) precise point positioning (PPP) with a low-cost micro-electro-mechanical sensor (MEMS)-based inertial system for precise applications. Both undifferenced and between-satellite single-difference (BSSD) ionosphere-free linear combinations of pseudorange and carrier phase measurements from three GNSS constellations, namely GPS, GLONASS and Galileo, are processed. An improved version of the PF, the unscented particle filter (UPF), which combines the UKF and the PF, is developed to merge the corrected GNSS satellite difference observations and inertial measurements and estimate inertial measurements biases and errors. The performance of the proposed integrated system is analyzed using real test scenarios. A tightly coupled GPS PPP/MEMS-based inertial system is first developed using EKF, which shows that decimeter-level positioning accuracy is achievable with both undifferenced and BSSD modes. However, in general, better positioning precision is obtained when BSSD linear combination is used. During GPS outages, the integrated system shows submeter-level accuracy in most cases when a 60-second outage is introduced. However, the positioning accuracy is improved to a few decimeter- and decimeter-level accuracy when 30- and 10-second GPS outages are introduced, respectively. The use of UPF, on the other hand, reduces the number of samples significantly, in comparison with the traditional PF. Additionally, in comparison with EKF, the use of UPF improves the positioning accuracy during the 60-second GPS outages by 14%, 13% and 15% in latitude, longitude and altitude, respectively. The addition of GLONASS and Galileo observations to the developed integrated system shows that decimeter- to centimeter-level positioning accuracy is achievable when the GNSS measurement updates are available. In comparison with the GPS-based integrated system, the multi-constellation GNSS PPP/MEMS-based inertial system improves the latitude, longitude and altitude components precision by 24%, 41% and 41%, respectively. In addition, the use of BSSD mode improves the precision of the latitude, longitude and altitude components by 23%, 15% and 13%, respectively, in comparison with the undifferenced mode. During complete GNSS outages, the developed integrated system continues to achieve decimeter-level accuracy for up to 30 seconds, while it achieves submeter-level accuracy when a 60-second outage is introduced.


2004 ◽  
Vol 57 (1) ◽  
pp. 85-101 ◽  
Author(s):  
Chaochao Wang ◽  
Gérard Lachapelle ◽  
M. Elizabeth Cannon

The use of low-cost GPS receivers and antennas for attitude determination can significantly reduce the overall hardware system cost. Compared to the use of high performance GPS receivers, the carrier phase measurements from low-cost equipment are subject to additional carrier phase measurement errors, such as multipath, antenna phase centre variation and noise. These error sources, together with more frequent cycle slip occurrences, severely deteriorate attitude determination availability, reliability and accuracy performance. This paper presents the investigation of a low-cost GPS/gyro integration system for attitude determination. By employing the dead reckoning sensor type, the ambiguity search region can be specifically defined as a small cube to enhance the ambiguity resolution process. A Kalman filter is implemented to fuse the rate gyro data with GPS carrier phase measurements. The quality control system based on innovation sequences is used to identify cycle slip occurrences and incorrect inter-antenna vector solutions. The availability of the integrated system also improves with respect to the GPS standalone system since the attitude parameters can be estimated using the angular rate measurements from rate gyros during GPS outages. The low-cost hardware used to design and test the integrated system consists of CMC Allstar receivers with the OEM AT575-70 antennas and Murata ENV-05D-52 piezoelectric vibrating rate gyroscopes. Tests in the urban area demonstrated that the introduction of rate gyros in a GPS-based attitude determination system not only effectively decreased the noise level in the estimated attitude parameters but coasted the attitude output during GPS outages and also significantly improved the system reliability.


2021 ◽  
Author(s):  
Mahmoud Abd Rabbou

This dissertation develops a low-cost integrated navigation system, which integrates multi-constellation global navigation satellite system (GNSS) precise point positioning (PPP) with a low-cost micro-electro-mechanical sensor (MEMS)-based inertial system for precise applications. Both undifferenced and between-satellite single-difference (BSSD) ionosphere-free linear combinations of pseudorange and carrier phase measurements from three GNSS constellations, namely GPS, GLONASS and Galileo, are processed. An improved version of the PF, the unscented particle filter (UPF), which combines the UKF and the PF, is developed to merge the corrected GNSS satellite difference observations and inertial measurements and estimate inertial measurements biases and errors. The performance of the proposed integrated system is analyzed using real test scenarios. A tightly coupled GPS PPP/MEMS-based inertial system is first developed using EKF, which shows that decimeter-level positioning accuracy is achievable with both undifferenced and BSSD modes. However, in general, better positioning precision is obtained when BSSD linear combination is used. During GPS outages, the integrated system shows submeter-level accuracy in most cases when a 60-second outage is introduced. However, the positioning accuracy is improved to a few decimeter- and decimeter-level accuracy when 30- and 10-second GPS outages are introduced, respectively. The use of UPF, on the other hand, reduces the number of samples significantly, in comparison with the traditional PF. Additionally, in comparison with EKF, the use of UPF improves the positioning accuracy during the 60-second GPS outages by 14%, 13% and 15% in latitude, longitude and altitude, respectively. The addition of GLONASS and Galileo observations to the developed integrated system shows that decimeter- to centimeter-level positioning accuracy is achievable when the GNSS measurement updates are available. In comparison with the GPS-based integrated system, the multi-constellation GNSS PPP/MEMS-based inertial system improves the latitude, longitude and altitude components precision by 24%, 41% and 41%, respectively. In addition, the use of BSSD mode improves the precision of the latitude, longitude and altitude components by 23%, 15% and 13%, respectively, in comparison with the undifferenced mode. During complete GNSS outages, the developed integrated system continues to achieve decimeter-level accuracy for up to 30 seconds, while it achieves submeter-level accuracy when a 60-second outage is introduced.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Liang Wang ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Zhiyu Wang

AbstractGlobal Navigation Satellite System raw measurements from Android smart devices make accurate positioning possible with advanced techniques, e.g., precise point positioning (PPP). To achieve the sub-meter-level positioning accuracy with low-cost smart devices, the PPP algorithm developed for geodetic receivers is adapted and an approach named Smart-PPP is proposed in this contribution. In Smart-PPP, the uncombined PPP model is applied for the unified processing of single- and dual-frequency measurements from tracked satellites. The receiver clock terms are parameterized independently for the code and carrier phase measurements of each tracking signal for handling the inconsistency between the code and carrier phases measured by smart devices. The ionospheric pseudo-observations are adopted to provide absolute constraints on the estimation of slant ionospheric delays and to strengthen the uncombined PPP model. A modified stochastic model is employed to weight code and carrier phase measurements by considering the high correlation between the measurement errors and the signal strengths for smart devices. Additionally, an application software based on the Android platform is developed for realizing Smart-PPP in smart devices. The positioning performance of Smart-PPP is validated in both static and kinematic cases. Results show that the positioning errors of Smart-PPP solutions can converge to below 1.0 m within a few minutes in static mode and the converged solutions can achieve an accuracy of about 0.2 m of root mean square (RMS) both for the east, north and up components. For the kinematic test, the RMS values of Smart-PPP positioning errors are 0.65, 0.54 and 1.09 m in the east, north and up components, respectively. Static and kinematic tests both show that the Smart-PPP solutions outperform the internal results provided by the experimental smart devices.


Author(s):  
Khan Badshah ◽  
Qin Yongyuan

<p class="MsoNormal" style="margin-top: 12.0pt; margin-right: 0in; margin-bottom: 6.0pt; margin-left: 0in; text-align: justify;"><em><span style="font-size: 9.0pt; font-family: &quot;Arial&quot;,sans-serif; mso-ascii-theme-font: minor-bidi; mso-hansi-theme-font: minor-bidi; mso-bidi-theme-font: minor-bidi;" lang="EN-GB">This paper discusses the techniques of attitude, velocity ad position estimation from GNSS carrier phase measurements, and investigates the performance of the lower precision MEMS-based INS/GNSS system based on carrier phase measurements. Double differenced carrier phase measurements provide more accurate velocity and position estimation compared to code and Doppler measurements. However, integer ambiguity is required to be removed for precise positioning. Multiples<span style="color: red;"> </span>antennae approach is used to derive the attitude information from carrier phase measurements in order to control the large initial misalignment angles for initialization of the integration process or to utilize during benign dynamics. Lever arm effect is considered to compensate for the separation of GNSS antenna and IMU location. The derived three GNSS observables are used to correct the INS through optimal Kalman filtering in a closed loop. Simulation results indicates the effectiveness of the integrated system for airborne as well as for land navigation vehicles</span></em><span lang="EN-GB">. </span></p><div id="_mcePaste" class="mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;"><p class="MsoNormal" style="margin-top: 12.0pt; margin-right: 0in; margin-bottom: 6.0pt; margin-left: 0in; text-align: justify;"><em><span style="font-size: 9.0pt; font-family: &quot;Arial&quot;,sans-serif; mso-ascii-theme-font: minor-bidi; mso-hansi-theme-font: minor-bidi; mso-bidi-theme-font: minor-bidi;" lang="EN-GB">This paper discusses the techniques of attitude, velocity ad position estimation from GNSS carrier phase measurements, and investigates the performance of the lower precision MEMS based INS/GNSS system based on carrier phase measurements. Double differenced carrier phase measurements provide more accurate velocity and position estimation compared to code and Doppler measurements. However, integer ambiguity is required to be removed for precise positioning. Multiples<span style="color: red;"> </span>antennae approach is used to derive the attitude information from carrier phase measurements in order to control the large initial misalignment angles for initialization of the integration process or to utilize during benign dynamics. Lever arm effect is considered to compensate for the separation of GNSS antenna and IMU location. The derived three GNSS observables are used to correct the INS through optimal Kalman filtering in a closed loop. Simulation results indicates the effectiveness of the integrated system for airborne as well as for land navigation vehicles</span></em><span lang="EN-GB">. </span></p></div>


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3084 ◽  
Author(s):  
Jungbeom Kim ◽  
Younsil Kim ◽  
Junesol Song ◽  
Donguk Kim ◽  
Minhuck Park ◽  
...  

In this study, we combined a time-differenced carrier phase (TDCP)-based global positioning system (GPS) with an inertial navigation system (INS) to form an integrated system that appropriately considers noise correlation. The TDCP-based navigation system can determine positions precisely based on high-quality carrier phase measurements without difficulty resolving integer ambiguity. Because the TDCP system contains current and previous information that violate the format of the conventional Kalman filter, a delayed state filter that considers the correlation between process and measurement noise is utilized to improve the accuracy and reliability of the TDCP-based GPS/INS. The results of a dynamic simulation and an experiment conducted to verify the efficacy of the proposed system indicate that it can achieve performance improvements of up to 70% and 60%, respectively, compared to the conventional algorithm.


Sign in / Sign up

Export Citation Format

Share Document