scholarly journals Integration and Simulations of INS/GNSS System using the Approach of Carrier Phase Measurements

Author(s):  
Khan Badshah ◽  
Qin Yongyuan

<p class="MsoNormal" style="margin-top: 12.0pt; margin-right: 0in; margin-bottom: 6.0pt; margin-left: 0in; text-align: justify;"><em><span style="font-size: 9.0pt; font-family: &quot;Arial&quot;,sans-serif; mso-ascii-theme-font: minor-bidi; mso-hansi-theme-font: minor-bidi; mso-bidi-theme-font: minor-bidi;" lang="EN-GB">This paper discusses the techniques of attitude, velocity ad position estimation from GNSS carrier phase measurements, and investigates the performance of the lower precision MEMS-based INS/GNSS system based on carrier phase measurements. Double differenced carrier phase measurements provide more accurate velocity and position estimation compared to code and Doppler measurements. However, integer ambiguity is required to be removed for precise positioning. Multiples<span style="color: red;"> </span>antennae approach is used to derive the attitude information from carrier phase measurements in order to control the large initial misalignment angles for initialization of the integration process or to utilize during benign dynamics. Lever arm effect is considered to compensate for the separation of GNSS antenna and IMU location. The derived three GNSS observables are used to correct the INS through optimal Kalman filtering in a closed loop. Simulation results indicates the effectiveness of the integrated system for airborne as well as for land navigation vehicles</span></em><span lang="EN-GB">. </span></p><div id="_mcePaste" class="mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;"><p class="MsoNormal" style="margin-top: 12.0pt; margin-right: 0in; margin-bottom: 6.0pt; margin-left: 0in; text-align: justify;"><em><span style="font-size: 9.0pt; font-family: &quot;Arial&quot;,sans-serif; mso-ascii-theme-font: minor-bidi; mso-hansi-theme-font: minor-bidi; mso-bidi-theme-font: minor-bidi;" lang="EN-GB">This paper discusses the techniques of attitude, velocity ad position estimation from GNSS carrier phase measurements, and investigates the performance of the lower precision MEMS based INS/GNSS system based on carrier phase measurements. Double differenced carrier phase measurements provide more accurate velocity and position estimation compared to code and Doppler measurements. However, integer ambiguity is required to be removed for precise positioning. Multiples<span style="color: red;"> </span>antennae approach is used to derive the attitude information from carrier phase measurements in order to control the large initial misalignment angles for initialization of the integration process or to utilize during benign dynamics. Lever arm effect is considered to compensate for the separation of GNSS antenna and IMU location. The derived three GNSS observables are used to correct the INS through optimal Kalman filtering in a closed loop. Simulation results indicates the effectiveness of the integrated system for airborne as well as for land navigation vehicles</span></em><span lang="EN-GB">. </span></p></div>

Author(s):  
Badshah Khan ◽  
Yong Yuan Qin

This paper discusses the techniques of attitude, velocity ad position estimation from GNSS carrier phase measurements, and investigates the performance of the lower precision MEMS based INS/GNSS system based on carrier phase measurements. Generally, a GPS receiver estimates the position and velocity from code phase and Doppler measurements. Double differenced carrier phase measurements provide more accurate velocity and position estimation compared to code and Doppler measurements. However, for position measurement, the integer ambiguity is required to be removed. Multiples antennae approach is used to derive the attitude information from carrier phase measurements in order to control the large initial misalignment angles for initialization of the integration process or to utilize during benign dynamics. Lever arm effect is considered to compensate for the separation of GNSS antenna and IMU location. The derived three GNSS observables are used to correct the INS through optimal Kalman filtering in a closed loop. Simulation results indicates the effectiveness of the integrated system for airborne as well as for land navigation vehicles.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3084 ◽  
Author(s):  
Jungbeom Kim ◽  
Younsil Kim ◽  
Junesol Song ◽  
Donguk Kim ◽  
Minhuck Park ◽  
...  

In this study, we combined a time-differenced carrier phase (TDCP)-based global positioning system (GPS) with an inertial navigation system (INS) to form an integrated system that appropriately considers noise correlation. The TDCP-based navigation system can determine positions precisely based on high-quality carrier phase measurements without difficulty resolving integer ambiguity. Because the TDCP system contains current and previous information that violate the format of the conventional Kalman filter, a delayed state filter that considers the correlation between process and measurement noise is utilized to improve the accuracy and reliability of the TDCP-based GPS/INS. The results of a dynamic simulation and an experiment conducted to verify the efficacy of the proposed system indicate that it can achieve performance improvements of up to 70% and 60%, respectively, compared to the conventional algorithm.


2019 ◽  
Vol 13 ◽  
pp. 174830181983304
Author(s):  
Hangshuai Ma ◽  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Chuanyi Li

The application of Beidou Satellite Navigation System (BDS) is developing rapidly. To satisfy the increasing demand for positioning performance, single-frequency precise point positioning (SFPPP) has been a focus in recent years. By introducing the SFPPP technique into the INS/BDS integrated system, higher navigation accuracy can be obtained. Cycle slip, which is caused by signal blockage during the measurement of the carrier phase, is a challenge for SFPPP application. In the INS/SFPPP-BDS integrated system, cycle slip can cause serious bias in BDS carrier phase measurements. In this paper, a new INS/SFBDS-PPP tightly coupled navigation system and a robust adaptive filtering method are proposed. Using a low-cost single-frequency receiver integrated with INS, an observation model was built based on the pseudo range and carrier phase by PPP preprocessing. The cycle slip was introduced into the state vector to improve the estimation precision. The test statistics, comprising the innovation and its covariance, were used to estimate the time at which cycle slip occurred and its amplitude to compensate for its effect on the observation. Finally, the proposed system model and algorithm are validated by simulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Leandro Baroni ◽  
Hélio Koiti Kuga

If three or more GPS antennas are mounted properly on a platform and differences of GPS signals measurements are collected simultaneously, the baselines vectors between antennas can be determined and the platform orientation defined by these vectors can be calculated. Thus, the prerequisite for attitude determination technique based on GPS is to calculate baselines between antennas to millimeter level of accuracy. For accurate attitude solutions to be attained, carrier phase double differences are used as main type of measurements. The use of carrier phase measurements leads to the problem of precise determination of the ambiguous integer number of cycles in the initial carrier phase (integer ambiguity). In this work two algorithms (LSAST and LAMBDA) were implemented and tested for ambiguity resolution allowing accurate real-time attitude determination using measurements given by GPS receivers in coupled form. Platform orientation was obtained using quaternions formulation, and the results showed that LSAST method performance is similar to LAMBDA as far as the number of epochs which are necessary to resolve ambiguities is concerned, but with processing time significantly higher. The final result accuracy was similar for both methods, better than 0.1° to 0.2°, when baselines are considered in decoupled form.


2011 ◽  
Vol 189-193 ◽  
pp. 4092-4096 ◽  
Author(s):  
Jung Chung Hung ◽  
Ching Shyong Shieh

This study attempted to design and develop an integrated system of a microforming apparatus with ultrasonic-vibration device. A closed-loop displacement and force control was implemented with servo motors. The apparatus has a load capacity up to 10,000N. The displacement error curve of the platform was measured with API 5DLS laser interferometer, and fed into the control program to compensate for motion errors. The positioning precision of the platform has been upgraded up to 5μm, with a load accuracy of 0.5N. Taking advantage of FEA and optimization technology, boosters and resonator with 35 kHz frequency were designed and fabricated. The simulation results and the experimental results match perfectly on the account of resonance frequencies and amplitudes. To the end, the integration of the ultrasonic-vibration device with microforming platform demonstrates a precision process for micro-parts.


2019 ◽  
Vol 94 ◽  
pp. 01002
Author(s):  
Jong-Hwa Jeon ◽  
Sang-Hoon Yoo ◽  
Jeung-Won Choi ◽  
Tae-Kyung Sung

In the conventional RTK (Real Time Kinematics), carrier phase measurements should be collected for several minutes in stationary state in order to determine the IA (Integer Ambiguity) in carrier phase to get the precise position. To determine the IA in motion, several OTM-RTK (On-The-Move RTK) methods have been proposed using vehicle dynamics or augmenting additional sensors. This paper presents a new OTM-RTK technique to determine the IA without aids of external sensors for precise positioning of highly maneuvering ground vehicles. In the proposed technique, the initial IA is determined fast by estimating precise position change during epochs using dual frequency carrier phase measurements. Therefore, IA determination of the proposed method is not influence by vehicle dynamics. By field experiment, performance of the proposed technique is analyzed including IA determination time according to vehicle dynamics and the number of visible SV.


2004 ◽  
Vol 57 (1) ◽  
pp. 85-101 ◽  
Author(s):  
Chaochao Wang ◽  
Gérard Lachapelle ◽  
M. Elizabeth Cannon

The use of low-cost GPS receivers and antennas for attitude determination can significantly reduce the overall hardware system cost. Compared to the use of high performance GPS receivers, the carrier phase measurements from low-cost equipment are subject to additional carrier phase measurement errors, such as multipath, antenna phase centre variation and noise. These error sources, together with more frequent cycle slip occurrences, severely deteriorate attitude determination availability, reliability and accuracy performance. This paper presents the investigation of a low-cost GPS/gyro integration system for attitude determination. By employing the dead reckoning sensor type, the ambiguity search region can be specifically defined as a small cube to enhance the ambiguity resolution process. A Kalman filter is implemented to fuse the rate gyro data with GPS carrier phase measurements. The quality control system based on innovation sequences is used to identify cycle slip occurrences and incorrect inter-antenna vector solutions. The availability of the integrated system also improves with respect to the GPS standalone system since the attitude parameters can be estimated using the angular rate measurements from rate gyros during GPS outages. The low-cost hardware used to design and test the integrated system consists of CMC Allstar receivers with the OEM AT575-70 antennas and Murata ENV-05D-52 piezoelectric vibrating rate gyroscopes. Tests in the urban area demonstrated that the introduction of rate gyros in a GPS-based attitude determination system not only effectively decreased the noise level in the estimated attitude parameters but coasted the attitude output during GPS outages and also significantly improved the system reliability.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Adrià Rovira-Garcia ◽  
José Miguel Juan ◽  
Jaume Sanz ◽  
Guillermo González-Casado ◽  
Javier Ventura-Traveset ◽  
...  

AbstractGlobal navigation satellite system (GNSS) satellites are equipped with very stable atomic clocks that can be used for assessing the models and strategies involved in the estimation processes, where the clock estimates should present high stability. For instance, GNSS products (including satellite and receiver clocks) are computed on daily basis, i.e., with the data of each day being processed independently from other days. This choice produces the well-known day-boundary discontinuities (DBDs) on clock estimates that stem from the estimation process, rather than to the nature of the atomic clock itself. The aim of the present contribution is to propose a strategy to estimate the satellite and receiver clock offsets that is capable to reduce the DBDs observed in the products of different analysis centers (ACs) within the International GNSS Service (IGS), ultimately improving the accuracy of clock estimates. Our approach relies on the use of unambiguous, undifferenced and uncombined carrier phase measurements collected by a network of permanent receivers on ground. The strategy considers the carrier phase hardware delays and assumes their possible variations along time. Our daily data processing aims to maintaining the natural continuity over days of the carrier phase measurements after integer ambiguity resolution (IAR), even if IAR is performed on daily batches. We compare our clock estimations with those computed by different IGS ACs, evaluating the linear behavior of the satellite atomic clocks on the day change. The results show the removal of DBD on clock estimates computed with the continuous and unambiguous carrier phase measurements. This DBD improvement may benefit the statistical characterization of long-term phenomena correlated with the on-board clocks.


Sign in / Sign up

Export Citation Format

Share Document