scholarly journals Effect of soil water saturation on slope stability: Tomsk case study

2019 ◽  
Vol 98 ◽  
pp. 05005 ◽  
Author(s):  
Natalia Brakorenko ◽  
Anna Leonova ◽  
Aleksey Nikitenkov

We investigate in this article the impact of soil water saturation on the slope stability, using a site in Tomsk city as a case study. The dependency of the shear strength parameters of soil on the degree of soil water saturation has been demonstrated. The paper also provides equations for the calculation of slope stability coefficient under different values of soil water saturation.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1086
Author(s):  
Andrzej Gruchot ◽  
Tymoteusz Zydroń ◽  
Agata Michalska

The paper presents the results of tests of the shear strength of the ash–slag mixture taken from the landfill located in Kraków (Poland) and the interfacial friction resistance at the contact between the ash–slag mixture and woven or nonwoven geotextiles. The tests were carried out in a direct shear apparatus on samples with and without water saturation. The samples for testing were formed in the apparatus box at the optimum moisture by compacting them to IS = 0.90 and 1.00. The test results reveal that the shear strength parameters of the ash-slag mixture were large. It was stated the significant influence of the compaction, the growth of which has resulted in an increase in the angle of internal friction (from 7% to 9%) and cohesion (from 60% to 97%). Whereas the saturation of the samples reduced the shear strength parameters (from 4% to 6%, of the internal friction angle and 30% to 43% of cohesion). The values of the interfacial friction resistance at the contact between the ash–slag mixture and the geotextiles were large as well, but slightly smaller than the values of the shear strength parameters of the mixture itself. The compaction caused an increase in the angle of interfacial friction (from 1% to 5%) and adhesion (from 31% to 127%). The water-saturation of the samples caused a change in the angle of interfacial friction (from −6% to 3%) and decline in the adhesion (from 22% to 69%). Values of the interaction coefficient were about 0.8–1.0 and they tended to rise with increasing the normal stress. Higher values of this parameter were obtained in tests with water saturation and for non-woven geotextiles.


2011 ◽  
Vol 97-98 ◽  
pp. 397-401 ◽  
Author(s):  
Zhi Rong Jia ◽  
Jun Shi

One of the main factors that influence the analytic results of slope stability is the determining of mechanical parameters. When the least square method is adopted as the method for determining the rock shear strength parameters, its precondition that the observation errors exist only in one observation variable is always being neglected. By analysis, the calculating of shear strength parameters is divided into three kind of situations, and a new approach to calculate the shear strength parameters is obtained according to the fact that the quadratic sum of distance between line and points in minimum, and the calculating formulae and applying scopes of three different calculating methods are also put forward. A calculating case shows that there are obvious differences among different calculating methods for determining the strength parameters, and it is necessary to select the calculating method based on the observation errors.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ju-yun Zhai ◽  
Xiang-yong Cai

By analyzing the characteristics of expansive soil from Pingdingshan, China, the shear strength parameters at different water contents, dry densities, and dry-wet cycles of expansive soil are obtained. It is found that, at higher soil-water content, the internal friction angle is 0° and the shallow layer of expansive soil slope will collapse and destroy; this has nothing to do with the height of the slope and the size of the slope. The parameters of soil influenced by atmosphere are the ones which have gone through dry-wet cycles, and the parameters of soil without atmospheric influence are the same as those of natural soil. In the analysis of slope stability, the shear strength parameters of soil can be determined by using the finite element method, and the stability coefficient of the expansive soil slope can be calculated.


Sign in / Sign up

Export Citation Format

Share Document