scholarly journals Differences in hydrogeochemistry between shallow and deep aquifers in the Baiyangdian basin, China

2019 ◽  
Vol 98 ◽  
pp. 07009
Author(s):  
Huaming Guo ◽  
Zhaoli Shen ◽  
Yi Chen ◽  
Kai Zhao ◽  
Haitao Li ◽  
...  

Groundwater is the dominant long-term water resource for agricultural irrigation and industrial production in the Baiyangdian basin, North China Plain. Groundwater and pore-water were investigated to evaluate chemical evolution and geochemical processes in shallow and deep aquifers. Results show that both shallow groundwater and shallow pore-water had higher TDS, Ca2+, Mg2+, SO42-, and HCO3- concentrations than deep groundwater and deep pore-water. Generally, concentrations of groundwater major ions were higher than those of pore-water in shallow aquifers, while they were slightly lower in groundwater than in pore-water from deep aquifers. Water isotopes showed the meteoric origin of groundwater and pore-water, although evaporation signature was traced in shallow groundwater. Shallow groundwater also experienced carbonate dissolution and silicate weathering. Silicate weathering and evaporite dissolution were the major hydrogeochemical processes in deep aquifers. This study indicated that deep groundwater has better water quality, but is vulnerable to contamination from shallow groundwater with high TDS and NO3- concentrations.

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3426
Author(s):  
Haipeng Guo ◽  
Muzi Li ◽  
Lu Wang ◽  
Yunlong Wang ◽  
Xisheng Zang ◽  
...  

Groundwater is an irreplaceable resource for irrigation and drinking in the North China Plain, and the quality of groundwater is of great importance to human health and social development. In this study, using the information from 59 groups of groundwater samples, groundwater quality conditions for irrigation and drinking purposes in an agricultural region of the North China Plain were analyzed. The groundwater belongs to a Quaternary loose rock pore water aquifer. The depths of shallow groundwater wells are 20–150 m below the surface, while the depths of deep groundwater wells are 150–650 m. The sodium adsorption ratio (SAR), sodium percentage (%Na), residual sodium carbonate (RSC), magnesium hazard (MH), permotic index (PI) and electrical conductivity (EC) were selected as indexes to evaluate the shallow groundwater suitability for irrigation. What’s more, the deep groundwater suitability for drinking was assessed and the human health risk of excessive chemicals in groundwater was studied. Results revealed that SAR, Na% and RSC indexes indicated the applicability of shallow groundwater for agricultural irrigation in the study area. We found 57.1% of the shallow groundwater samples were located in high salinity with a low sodium hazard zone. The concentrations of fluorine (F−) in 79.0% of the deep groundwater samples and iodine (I−) in 21.1% of the deep groundwater samples exceeded the permissible limits, respectively. The total hazard quotient (HQ) values of fluorine in over half of the deep groundwater samples exceeded the safety limits, and the health risk degree was ranked from high to low as children, adult females and adult males. In addition to natural factors, the soil layer compression caused by groundwater over-exploitation increased the fluorine concentration in groundwater. Effective measures are needed to reduce the fluorine content of the groundwater of the study area.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1209 ◽  
Author(s):  
Xiaomin Gu ◽  
Yong Xiao ◽  
Shiyang Yin ◽  
Qichen Hao ◽  
Honglu Liu ◽  
...  

Water scarcity has led to wide use of reclaimed water for irrigation worldwide, which may threaten groundwater quality. To understand the status of groundwater in the reclaimed water irrigation area in Beijing, 87 samples from both shallow and deep aquifers were collected to determine the factors affecting groundwater chemistry and to assess groundwater quality for drinking and irrigation purposes. The results show that groundwater in both shallow and deep aquifers in the study area is weakly alkaline freshwater with hydrogeochemical faces dominated by HCO3-Na·Mg·Ca, HCO3-Mg·Ca·Na, HCO3-Ca·Na, and HCO3-Na. The chemical composition of groundwater in both shallow and deep aquifers is dominantly controlled by the dissolution of halite, gypsum, anhydrite, and silicates weathering, as well as ion exchange. Geogenic processes (rock weathering and ion exchange) are the only mechanisms controlling groundwater chemistry in deep aquifers. Besides geogenic processes, evaporation and anthropogenic activities also affect the chemistry of shallow groundwater. Quality assessment reveals that both shallow and deep groundwater are generally suitable for drinking and irrigation purposes. The quality of deep groundwater is more excellent for drinking than shallow groundwater. However, long-term use of deep groundwater for irrigation exhibits higher potential risks to deteriorate soil property due to the relative higher permeability indexes (PI). Therefore, it is recommended that deep groundwater is preferentially used for drinking and domestic purpose, and shallow groundwater for agricultural irrigation.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3361
Author(s):  
Xianglong Hou ◽  
Shiqin Wang ◽  
Xiaorui Jin ◽  
Mingliang Li ◽  
Mengyu Lv ◽  
...  

In the saline water area of our research, deep groundwater was over-pumped for agricultural irrigation which resulted in a decline of the deep groundwater level and an increase in the shallow groundwater table. Soil salination was also aggravated due to the strong evapotranspiration (ET) in the shallow groundwater areas, where ET removes water vapor from the unsaturated zone (ETu), and the groundwater (ETg). Joint utilities of multiple water sources of transferred water and local shallow and deep groundwater are essential for reasonable management of irrigation water. However, it is still difficult to distinguish ETu and ETg in coupled management of unsaturated zone and groundwater, which account for the water balance in utilities of multiple water sources in a regional scale. In this paper, we used an RS-based ETWatch model as a source of evapotranspiration data coupled with UZF-MODFLOW, an integrated hydrological model of the unsaturated–saturated zone, to estimate the ETg and ETu on a regional scale. It was shown that the coupled model (ETWatch-UZF-MODFLOW) avoids the influence of ETu on the groundwater balance calculation and improves the accuracy of the groundwater model. The model was used in the simulation and prediction of groundwater level. The eastern North China Plain (NCP) was selected as the study area where shallow groundwater was saline water and deep groundwater cone existed. We compared four different scenarios of irrigation methods, including current irrigation scenario, use of saline water, limited deep groundwater pumping, use of multiple water sources of transferred water and local groundwater. Results indicate that the total ETg for the four scenarios in the study area from 2013 to 2030 is 119 × 108 m3, 81.9 × 108 m3, 85.0 × 108 m3, and 92.3 × 108 m3, respectively, and the proportion of ETg to total ET was 6.85%, 4.79%, 4.97%, 5.37%. However, in regions where the groundwater depth is less than 3 m, ETg accounts for 12% of the total ET, indicating that groundwater was one of the main sources of evapotranspiration in shallow groundwater depth area.


2021 ◽  
Vol 80 (18) ◽  
Author(s):  
Long Sun ◽  
Yongbing Zhang ◽  
Haiyang Si ◽  
Tema Koketso Ealotswe ◽  
Lei Wei ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2416
Author(s):  
Ming Lei ◽  
Yuqian Zhang ◽  
Yuxuan Dang ◽  
Xiangbin Kong ◽  
Jingtao Yao

Agricultural water management is a vital component of realizing the United Nation’s Sustainable Development Goals because of water shortages worldwide leading to a severe threat to ecological environments and global food security. As an agro-intensified irrigation area, the North China Plain (NCP) is the most important grain basket in China, which produces 30%–40% of the maize and 60%–80% of the wheat for China. However, this area has already been one of the largest groundwater funnels in the world due to long-term over-exploitation of groundwater. Due to the low precipitation during the growing period, winter wheat requires a large amount of groundwater to be pumped for irrigation, which consumes 70% of the groundwater irrigation. To alleviate the overexploitation of groundwater, the Chinese government implemented the Winter Wheat Fallow Policy (WWFP) in 2014. The evaluation and summarization of the WWFP will be beneficial for improving the groundwater overexploitation areas under high-intensity irrigation over all the world. So far, there have been few attempts at estimating the effectiveness of this policy. To fill this gap, we assessed the planting area of field crops and calculated the evapotranspiration of crops based on remote-sensed and meteorological data in the key area—Hengshui. We compared the agricultural water consumption before and after the implementation of this policy, and we analyzed the relationship between changes in crop planting structure and groundwater variations based on geographically weighted regression. Our results showed the overall classification accuracies for 2013 and 2015 were 85.56% and 82.22%, respectively. The planting area of winter wheat, as the most reduced crop, decreased from 35.71% (314,053 ha) in 2013 to 32.98% (289,986 ha) in 2015. The actual reduction in area of winter wheat reached 84% of the target (26 thousand ha) of the WWFP. The water consumption of major crops decreased from 2.98 billion m3 of water in 2013 to 2.83 billion m3 in 2015, a total reduction of 146 million m3, and 88.43% of reduced target of the WWFP (166 million m3). The planting changes of winter wheat did not directly affect the change of shallow groundwater level, but ET was positively related to shallow groundwater level and precipitation was negatively related to shallow groundwater levels. This study can provide a basis for the WWFP’s improvement and the development of sustainable agriculture in high-intensity irrigation areas.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 312 ◽  
Author(s):  
Amara Cisse ◽  
Adnan Arshad ◽  
Xiaofen Wang ◽  
Fanta Yattara ◽  
Yuegao Hu

The effects of long-term incorporation of organic manure and biofertilizers have been investigated on winter wheat in the North China Plain (NCP). The five-year field experiment (2013–2018) has illustrated the responses of grain yield and yield components. Seven fertilization approaches, included pig farm-yard-manure and biofertilizers amendments combined with five NPK% drop levels of chemical fertilizer ratio + organic fertilizer + biofertilizer (0, C+O+B) 25%, CL4; 50%, CL3; 75%, CL1; and 100%, CL0), without fertilizer as control (CK), in NCP during the years 2013–2018. Results showed that the grain yields of CL1 and CL2 were equivalent to CL0 in all growing seasons except 2014/2015. The grain yields of CL4 were 29.9% to 46.6% lower than that of CL0 during 2014/2015, 2016/2017, and 2017/2018. The valuable spike-number, grain number per-spike, and 1000-grain weight showed significant variations among different growing periods. Regression analysis of grain yield and yield components indicated that number grains per-spike showed significant increase in seed yield formation. The 1000-grain weight was the major parameter that influenced yield of moderate and low yielding periods, respectively. The results revealed that application of 30 m3 ha−1 pig farm-yard-manure and 20 kg ha−1 biofertilizers has reduced at least 50% of the NPK fertilization without dropping grain yields in the North China Plain.


Sign in / Sign up

Export Citation Format

Share Document