scholarly journals Observation of Long-Range Dust Transport from Mesopotamia and Arabian Peninsula Toward Tehran, Iran

2019 ◽  
Vol 99 ◽  
pp. 02006 ◽  
Author(s):  
Hossein Panahifar ◽  
Hamid Reza Khalesifard

Continuous vertically resolved aerosol measurements using lidar were performed in Tehran, Iran. Lidar results has been used in combination with particulate matter monitoring, synoptic meteorology observa- tion as well as satellite-based measurements. The aerosol types are classified by their optical properties. The volume linear depolarization ratio (VLDR) at 532 nm lies mostly between 0:05-0:10. These results show that mostly urban pollution mixed with particles are present in the atmosphere above Tehran. During dust events, the VLDR at 532 nm lies between 0:20-0:35.

2019 ◽  
Author(s):  
Elina Giannakaki ◽  
Panos Kokkalis ◽  
Eleni Marinou ◽  
Nikolaos S. Bartsotas ◽  
Vassilis Amiridis ◽  
...  

Abstract. In this study we estimate the particle extinction profiles at Finokalia, Crete, using only the information provided by the elastic and polarization channels of a PollyXT lidar system. Most of the time Finokalia site is affected by only two aerosol types, i.e. marine and dust particles. These two aerosol types, having different optical properties, permit the separation of aerosol mixture. The proposed method uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. Any difference between the proposed methodology and Raman extinction profiles indicates that the non-dust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun-photometric aerosol optical depth observations is performed as well during daytime with reasonable differences between the two instruments. Differences in the total aerosol optical depth is attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to overlap problem.


2020 ◽  
Vol 13 (2) ◽  
pp. 893-905 ◽  
Author(s):  
Elina Giannakaki ◽  
Panos Kokkalis ◽  
Eleni Marinou ◽  
Nikolaos S. Bartsotas ◽  
Vassilis Amiridis ◽  
...  

Abstract. A new method, called ElEx (elastic extinction), is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. ElEx uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are also taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. In this study, ElEx was applied in an aerosol mixture of marine and dust particles at Finokalia station during the CHARADMExp campaign. Any difference between ElEx and Raman extinction profiles indicates that the nondust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun photometer aerosol optical depth observations is performed as well during daytime. Differences in the total aerosol optical depth are varying between 1.2 % and 72 %, and these differences are attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to the overlap problem.


2020 ◽  
Author(s):  
Qiaoyun Hu ◽  
Haofei Wang ◽  
Philippe Goloub ◽  
Zhengqiang Li ◽  
Igor Veselovskii ◽  
...  

Abstract. The Taklamakan desert is an important dust source for the global atmospheric dust budget and a cause of the dust weather in Eastern Asia. The characterization of the properties and vertical distributions of Taklamakan dust in the source region is still very limited. To fill this gap, the DAO (Dust Aerosol Observation) was conducted in Kashi, China in 2019. Kashi site is about 150 km to the west rim of the Taklamakan desert and is strongly impacted by desert dust aerosols, especially in spring time, i.e. April and May. Apart from dust, fine particles coming from local anthropogenic emissions or/and transported aerosols are also a non-negligible aerosol component. In this study, we provide the first profiling of the 2α + 3β + 3δ lidar profiles of Taklamakan dust based on a multi-wavelength Raman polarization lidar. Four cases, including two Taklamakan dust events (Case 1 and 2) and two polluted dust events (Case 3 and 4) are presented. The lidar ratio in the Taklamakan dust outbreak is found to be 51 ± 8–56 ± 8 sr at 355 nm and 45 ± 7 sr at 532 nm. The particle linear depolarization ratios are about 0.28 ± 0.04–0.32 ± 0.05 at 355 nm, 0.35 ± 0.05 at 532 nm and 0.31 ± 0.05 at 1064 nm. The observed polluted dust is commonly featured with reduced particle linear depolarization ratio and enhanced extinction and backscatter Angstrom exponent. In Case 3, the lidar ratio of polluted dust is about 42 ± 6 sr at 355 nm and 40 ± 6 sr at 532 nm. The particles linear depolarization ratios decrease to about 0.25, with a weak spectral dependence. In Case 4, the variability of lidar ratio and particle linear depolarization ratio is higher than in Case 3, which reflects the complexity of the nature of mixed pollutant and the mixing state. The results provide the first reference for the characteristics of Taklamakan dust measured by Raman lidar. The data could contribute to complementing the dust model and improving the accuracy of climate modeling.


2020 ◽  
Author(s):  
Anna Gialitaki ◽  
Alexandra Tsekeri ◽  
Vassilis Amiridis ◽  
Romain Ceolato ◽  
Lucas Paulien ◽  
...  

Abstract. We examine the capability of near-spherical-shaped particles to reproduce the non-typical Particle Linear Depolarization Ratio (PLDR) values measured over Europe for stratospheric smoke originating from Canadian wildfires. The smoke layers were detected both in the troposphere and the stratosphere, though in the latter case the particles presented PLDR values of almost 18 % at 532 nm as well as a strong spectral dependence from the UV to the Near-IR. The assumption that the smoke particles have a near-spherical shape allows for the reproduction of the observed PLDR and Lidar Ratio (LR), whereas this was not possible when using more complicated shapes. The results presented here are supported by recent findings in the literature, showing that up to now the near-spherical shape (or closely similar shapes) is the only morphology found capable of reproducing the observed intensive optical properties of stratospheric smoke, as well as their spectral dependence.


2014 ◽  
Vol 7 (11) ◽  
pp. 3773-3781 ◽  
Author(s):  
J. Gasteiger ◽  
V. Freudenthaler

Abstract. A better quantification of aerosol properties is required for improving the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the diversity of the microphysical properties of aerosols and the complex relation between their microphysical and optical properties. Advanced lidar systems provide spatially and temporally resolved information on the aerosol optical properties that is sufficient for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of aeroplanes, was retrieved from measurements of such lidar systems in southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on those of MULIS and POLIS of the Ludwig-Maximilians-Universität in Munich (Germany) which measure the linear depolarization ratio at 355 and 532 nm with high accuracy. The improvements are determined by comparing uncertainties from retrievals applied to simulated measurements of this lidar setup with uncertainties obtained when the depolarization at 1064 nm is added to this setup. The simulated measurements are based on real lidar measurements of transported Eyjafjallajökull volcano ash. It is found that additional 1064 nm depolarization measurements significantly reduce the uncertainty of the retrieved mass concentration and effective particle size. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. The size dependence of the depolarization does not vary strongly with refractive index, thus we expect similar benefits for the retrieval in case of measurements of other volcanic ash compositions and also for transported desert dust. For the retrieval of the single scattering albedo, which is relevant to the radiative transfer in aerosol layers, no significant improvements were found.


2020 ◽  
Author(s):  
Xiaoxia Shang ◽  
Elina Giannakaki ◽  
Stephanie Bohlmann ◽  
Maria Filioglou ◽  
Annika Saarto ◽  
...  

Abstract. We present a novel algorithm for characterizing the optical properties of pure pollen particles, based on the depolarization values obtained in lidar measurements. The algorithm was first tested and validated through a simulator, and then applied to the lidar observations during a four-month pollen campaign from May to August 2016 at the European Aerosol Research Lidar Network (EARLINET) station in Kuopio (62°44′ N, 27°33′ E), in Eastern Finland. Twenty types of pollen were observed and identified from concurrent measurements with Burkard sampler; Birch (Betula), pine (Pinus), spruce (Picea) and nettle (Urtica) pollen were most abundant, contributing more than 90 % of total pollen load, regarding number concentrations. Mean values of lidar-derived optical properties in the pollen layer were retrieved for four intense pollination periods (IPPs). Lidar ratios at both 355 and 532 nm ranged from 55 to 70 sr for all pollen types, without significant wavelength-dependence. Enhanced depolarization ratio was found when there were pollen grains in the atmosphere, and even higher depolarization ratio (with mean values of 25 % or 14 %) was observed with presence of the more non-spherical spruce or pine pollen. The depolarization ratio at 532 nm of pure pollen particles was assessed, resulting to 24 ± 3 % and 36 ± 5 % for birch and pine pollen, respectively. Pollen optical properties at 1064 nm and 355 nm were also estimated. The backscatter-related Ångström exponent between 532 and 1064 nm was assessed as ~ 0.8 (~ 0.5) for pure birch (pine) pollen, thus the longer wavelength would be better choice to trace pollen in the air. The pollen depolarization ratio at 355 nm of 17 % and 30 % were found for birch and pine pollen, respectively. The depolarization values show a wavelength dependence for pollen. This can be the key parameter for pollen detection and characterization.


2010 ◽  
Vol 10 (11) ◽  
pp. 5011-5030 ◽  
Author(s):  
R. A. de Villiers ◽  
G. Ancellet ◽  
J. Pelon ◽  
B. Quennehen ◽  
A. Schwarzenboeck ◽  
...  

Abstract. Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm) including volume depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions). Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient 532 nm,volume depolarization and color ratio between 1064 and 532 nm in aerosol layers) along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Optical depth of the aerosol layers are always rather small (<4%) while transported over the Arctic and ratio of the total attenuated backscatter (i.e. including molecular contribution) provide more stable result than conventional aerosol backscatter ratio. Above Asia, CALIPSO data indicate more depolarization (up to 15%) and largest color ratio (>0.5) for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust), while low depolarization together with smaller and quasi constant color ratio (≈0.3) are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarization ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European plume has shown aerosol optical properties intermediate between the two Asian sources with color ratio never exceeding 0.4 and moderate depolarization ratio being always less than 8%, i.e. less aerosol from the accumulation mode.


2014 ◽  
Vol 7 (5) ◽  
pp. 5095-5115
Author(s):  
J. Gasteiger ◽  
V. Freudenthaler

Abstract. A better quantification of aerosol microphysical and optical properties is required to improve the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the huge diversity of aerosol composition and of their shape and size distribution, and due to the complexity of the relation between the microphysical and optical properties. Lidar remote sensing is a valuable tool to gain spatially and temporally resolved information on aerosol properties. Advanced lidar systems provide sufficient information on the aerosol optical properties for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of airplanes, was retrieved from measurements of such lidar systems in Southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on the setup of MULIS and POLIS of the LMU in Munich which measure the linear depolarization ratio at 355 nm and 532 nm with high accuracy. By comparing results of retrievals applied to simulated lidar measurements with and without the depolarization at 1064 nm it is found that the availability of 1064 nm depolarization measurements reduces the uncertainty of the retrieved mass concentration and effective particle size by a factor of about 2–3. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. However, the retrieval of the single scattering albedo, which is relevant for the radiative transfer in aerosol layers, does hardly benefit from the availability of 1064 nm depolarization measurements.


2015 ◽  
Vol 15 (3) ◽  
pp. 3381-3413 ◽  
Author(s):  
S.-K. Shin ◽  
D. Müller ◽  
K. H. Lee ◽  
D. Shin ◽  
Y. J. Kim ◽  
...  

Abstract. We use five years (2009–2013) of multiwavelength Raman lidar measurements at Gwangju, Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust in dependence of its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modelling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground in which these plumes were transported: (I) the dust layers passed over China at high altitude levels until arrival over Gwangju, and (II) the Asian dust layers were transported near the surface and the lower troposphere over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ in dependence of their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 in case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios, and higher lidar ratio and Ångström exponents. The mean linear particle depolarization ratio was 0.13 ± 0.04, the mean lidar ratios were 63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm, respectively, and the mean Ångström exponent was 0.98 ± 0.51. These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume in dependence of transport time if the pollution layer travelled over China at low heights, i.e., below approximately 3 km above ground. In contrast we do not find such a trend if the dust plumes travelled at heights above 4 km over China. We need a longer time series of lidar measurements in order to determine the change of optical properties of dust with transport time in a quantitative way.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hossein Panahifar ◽  
Ruhollah Moradhaseli ◽  
Hamid Reza Khalesifard

AbstractThe highly polluted atmosphere above Tehran has been investigated by using a polarization lidar operating at 532 nm, in-situ particulate matter suites distributed over the city, and meteorological observations. The measurement campaign is conducted from Nov. 2014 to Jan. 2016. Three typical cases are studied in detail where, the atmosphere is polluted with urban pollution, mixture of urban pollution and dust particles from local sources, and long range transported dust from the Arabian Peninsula. For these cases, vertical profiles of the lidar backscatter coefficient, extinction coefficients, particle depolarization ratio ($$\delta _{\text {p}}$$ δ p ) and mass concentrations of atmospheric aerosols (separated into dust and non-dust particles) are presented. Using the lidar recordings, variations of the planetary boundary layer height above the city are investigated along the year. During November to February, lidar profiles frequently show polluted boundary layers that are reaching up to 1 km above the ground level. The depolarization ratio ($$\delta _{\text {p}}$$ δ p ) varies between 0.04 and 0.08 in the polluted boundary layer. During the campaign, for 103 days the urban pollution was dominant, 45 recorded dust events ($$0.15<\delta _{\text {p}}<0.20$$ 0.15 < δ p < 0.20 ) were originated from the dry regions in the south of Tehran and 15 dust events ($$0.20<\delta _{\text {p}}<0.35$$ 0.20 < δ p < 0.35 ) impacted the city that were originated from the Arabian Desert and Mesopotamia.


Sign in / Sign up

Export Citation Format

Share Document