scholarly journals Production efficiency of Poland farm-scale biogas plants: A case study

2020 ◽  
Vol 154 ◽  
pp. 02002 ◽  
Author(s):  
Krzysztof Pilarski ◽  
Agnieszka A. Pilarska

This paper provides the analysis of results of biogas and methane yield for: maize silage (MS), pig slurry (PS), waste potatoes (WP) and sugar beet pulp (SB). The results show that maize silage is the most energy substrate (among the samples tested), providing a cumulative methane yield from 595 to 631 m-3 Mg VS (VS – volatile solids). The study was carried out in a laboratory scale using anaerobic batch reactors, at controlled (mesophilic) temperature and pH conditions. This paper is Part I of a report of an experiment carried out, in the laboratory scale and in the commercial scale (in parallel) The purpose of the experiment was to verify differences in biomethane yields of the same materials in the two scales. Moreover, this paper is an introduction to a presentation of the method to determine the biochemical methane potential correction coefficient (BMPCC), the details of which will be explained in Part II.

Detritus ◽  
2020 ◽  
pp. 11-18 ◽  
Author(s):  
Senem Önen Cinar ◽  
Kerstin Kuchta

The study examines the effect of temperature fluctuations on biogas production efficiency in biogas plants with the aim of evaluating the temperature flexibility of the process. Laboratory scale batch reactors were prepared with the chosen substrate (Dried Distillers Grains with Soluble, DDDS) and the study was conducted in three batches. A biogas formation potential test was implemented in each batch in a temperature-controlled room and in a temperature controlled water bath. The temperature changes took place on the third day of tests to evaluate the effect of 5°C, 10°C and 15°C increases on biogas production efficiency in separate test sets. Batch experiments showed that it is possible to ensure process recovery after 5°C and 10°C increases. Overall, the specific biomethane production was obtained between 364-412 Nml CH4 / g oDM. Unlike 5°C and 10°C increases, after 15°C increase a lower methane content was obtained. These results show that it is possible to have flexible temperature operation in the process, even with high-temperature increases.


2017 ◽  
Vol 31 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Krzysztof Pilarski ◽  
Antoni Ryniecki ◽  
Kamila Tomaszyk ◽  
Jacek Dach ◽  
...  

Abstract This paper provides the analysis of results of biogas and methane yield for vegetable dumplings waste: dough with fat, vegetable waste, and sludge from the clarifier. Anaerobic digestion of food waste used in the experiments was stable after combining the substrates with a digested pulp composed of maize silage and liquid manure (as inoculum), at suitable ratios. The study was carried out in a laboratory scale using anaerobic batch reactors, at controlled (mesophilic) temperature and pH conditions. The authors present the chemical reactions accompanying biodegradation of the substrates and indicate the chemical compounds which may lead to acidification during the anaerobic digestion. An anaerobic digestion process carried out with the use of a dough-and-fat mixture provided the highest biogas and methane yields. The following yields were obtained in terms of fresh matter: 242.89 m3 Mg−1 for methane and 384.38 m3 Mg−1 for biogas, and in terms of volatile solids: 450.73 m3 Mg−1 for methane and 742.40 m3 Mg−1 for biogas. Vegetables and sludge from the clarifier (as fresh matter) provided much lower yields.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5374
Author(s):  
Robert Bedoić ◽  
Goran Smoljanić ◽  
Tomislav Pukšec ◽  
Lidija Čuček ◽  
Davor Ljubas ◽  
...  

Crop-based biogas energy production, in combination with electricity generation under subsidy schemes, is no longer considered a favourable business model for biogas plants. Switching to low-cost or gate fee feedstocks and utilising biogas via alternative pathways could contribute to making existing plants fit for future operations and could open up new space for further expansion of the biogas sector. The aim of this study was to combine a holistic and interdisciplinary approach for both the biogas production side and the utilisation side to evaluate the impact of integrating the biogas sector with waste management systems and energy systems operating with a high share of renewable energy sources. The geospatial availability of residue materials from agriculture, industry and municipalities was assessed using QGIS software for the case of Northern Croatia with the goal of replacing maize silage in the operation of existing biogas plants. Furthermore, the analysis included positioning new biogas plants, which would produce renewable gas. The overall approach was evaluated through life cycle assessment using SimaPro software to quantify the environmental benefits and identify the bottlenecks of the implemented actions. The results showed that the given feedstocks could replace 212 GWh of biogas from maize silage in the relevant region and create an additional 191 GWh of biomethane in new plants. The LCA revealed that the proposed measures would contribute to the decarbonisation of natural gas by creating environmental benefits that are 36 times greater compared to a business-as-usual concept. The presented approach could be of interest to stakeholders in the biogas sector anywhere in the world to encourage further integration of biogas technologies into energy and environmental transitions.


2014 ◽  
Vol 44 (4) ◽  
pp. 153
Author(s):  
Elio Dinuccio ◽  
Fabrizio Gioelli ◽  
Dalibor Cuk ◽  
Luca Rollè ◽  
Paolo Balsari

A comparative study was set up in order to assess the technical feasibility of the long-term reuse of the mechanically separated co-digested solid fraction as a feedstock for anaerobic digestion plants (ADP). The biogas yields of two feedstock mixtures (A and B) were assessed in mesophilic conditions (40°C±2°C) using 6 lab-scale continuous stirredtank reactors. Feedstock mixture A (control) consisted of pig slurry (70%), farmyard manure (4%), sorghum silage (12%) and maize silage (14%). Feedstock mixture B was the same as the control plus the solid fraction derived from the mechanical separation of the output raw codigestate collected from the reactors. All reactors were fed simultaneously, three times a week, over a period of nine month. According to the study results, the reuse of the co-digested solid fraction as feedstock for ADP could increase the methane yield by approximately 4%. However, ADP efficiency evaluation (<em>e.g.</em>, daily yield of methane per m<sup>3</sup> of digester) suggests limiting this practice to a maximum time period of 120 days.


2014 ◽  
Vol 34 (1) ◽  
pp. 196-203 ◽  
Author(s):  
Pablo Ferrer ◽  
María Cambra-López ◽  
Alba Cerisuelo ◽  
David S. Peñaranda ◽  
Verónica Moset

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Christina-Luise Roß ◽  
Kerstin Nielsen ◽  
Jorita Krieger ◽  
Marieke Hoffmann ◽  
Karen Sensel-Gunke ◽  
...  

Depending on the quality of the input substrates, process parameters, and postfermentation treatments, digestates may contain a broad spectrum of potentially toxic elements. We suspected that these contents may vary on a broad scale even under seemingly stable process conditions at the biogas plant. Digestates from four biogas plants were therefore continuously analyzed for their contents of phosphorus, nitrogen, cadmium, copper, lead, and zinc over a period of six years. The input substrates varied between the plants (e.g., cattle and pig slurry and rye and maize silage), but were the same for each plant over the whole period. The N : P ratio of the digestates ranged from 2 to 24, with the digestate coming from cofermentation of pig slurry and energy crops (“DG Pig”) having the widest range of N : P ratio over the years. Heavy metal loads of all digestates and during all evaluations did not exceed the limits set by European or German legislation, but as previously expected, showed a large variability especially if cattle or pig manure were used as substrates. Copper content of Cattle slurry before digestion was 897.7 mg kg−1 DM in one case, and zinc content of DG Pig reached 590.2 mg kg−1 DM also once during the investigation. As a result, we strongly recommend to monitor especially phosphorus, copper, and zinc contents in digestates very closely and in short intervals.


2019 ◽  
Vol 37 (12) ◽  
pp. 1240-1249 ◽  
Author(s):  
Spyridon Achinas ◽  
Gerrit Jan Willem Euverink

The biodegradable portion of solid waste generated in farmhouses can be treated for energy recovery with small portable biogas plants. This action can be done across the Netherlands and all around the planet. This study aims to appraise the performance of anaerobic digestion of different wastes (cow manure, food waste and garden waste) obtained from a regional farmhouse. Batch reactors were established under mesophilic conditions in order to investigate the impact of ternary mixtures on the anaerobic digestion process performance. Different mixing ratios were set in the batch tests. The upshots from the experiments connoted that ternary digestion with cow manure:food waste:garden waste mixing ratio of 40:50:10 yielded higher biogas amount. The kinetics’ results showed quite good congruence with the experimental study. The results from the kinetic analysis appeared to be in line with the experimental one.


Sign in / Sign up

Export Citation Format

Share Document