scholarly journals Pandeglang regency spatial evaluation based on tsunami hazard potential

2020 ◽  
Vol 156 ◽  
pp. 04010
Author(s):  
Roihan Nauval Majid ◽  
Triarko Nurlambang

The coastal area of Pandeglang Regency is one area that has the potential to be affected by the tsunami. The existence of the Krakatau Anak Volcano and plate subduction paths in the Sunda Strait cause Pandeglang Regency to become one of the regions that has a tsunami potential. One of the steps to anticipate the tsunami disaster is to do spatial planning that has considered the potential tsunami hazard. The purpose of this research is to evaluate the spatial area of Pandeglang Regency based on the identification of potential tsunami hazards. The identification of potential tsunami hazards is done by modeling the potential distribution of tsunami wave heights in coastal areas using GIS modeling. The results of the identification of potential tsunami hazards on the coast of Pandeglang Regency showed that an area of 194.15 hectares of residential land and the location of existing activities had the potential to be affected by the tsunami. The total area of the coastal area of Pandeglang Regency which was potentially affected by the tsunami hazard reached 1483.26 hectares. The results of a review of the Pandeglang Regency's spatial plan showed that 488.22 hectares of land were found in the planned residential spatial patterns that were potentially affected by the tsunami. Therefore, the regional spatial plan of Pandeglang Regency in the study area needs to be evaluated by changing the function of residential land that has the potential to be affected by the tsunami hazard to the border of the beach or other open land.

2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Wisyanto Wisyanto

Tsunami which was generated by the 2004 Aceh eartquake has beenhaunting our life. The building damage due to the tsunami could be seenthroughout Meulaboh Coastal Area. Appearing of the physical loss wasclose to our fault. It was caused by the use dan plan of the land withoutconsidering a tsunami disaster threat. Learning from that event, we haveconducted a research on the pattern of damage that caused by the 2004tsunami. Based on the analysis of tsunami hazard intensity and thepattern of building damage, it has been made a landuse planning whichbased on tsunami mitigation for Meulaboh. Tsunami mitigation-based ofMeulaboh landuse planning was made by intergrating some aspects, suchas tsunami protection using pandanus greenbelt, embankment along withhigh plants and also arranging the direction of roads and setting of building forming a rhombus-shaped. The rhombus-shaped of setting of the road and building would reduce the impact of tsunamic wave. It is expected that these all comprehensive landuse planning will minimize potential losses in the future .


2020 ◽  
Vol 6 (1) ◽  
pp. 31-41
Author(s):  
Resti Elida Nurhawati Siregar ◽  
Ahmad Zakaria ◽  
Armijon Armijon

The eruption of the Anak Krakatoa volcano (GAK) in December 2018 caused part of the body of GAK to collapse into the sea and caused a tsunami. This avalanche also caused changes in the topography of GAK. If there is a repeat of the disaster with the current GAK topography, it will certainly cause changes in tsunami wave height at the shoreline which will affect changes in the tsunami inundation area. Because the location of the Lampung Bay coastal area which is quite close to GAK makes the Lampung Bay coastal area vulnerable to the tsunami disaster. So, it is necessary to study the tsunami inundation area due to changes in the current GAK topography in the coastal area of Lampung Bay. This study was conducted using non-numerical methods to obtain wave heights at the shoreline and the Berryman methods to obtain tsunami inundation areas in the coastal areas of Lampung bay by making three scenarios. Based on the results of the study, it is known that the height of tsunami waves, which are 13 meters, 26 meters, and 39 meters with an average time of arrival of tsunami waves on the shoreline is 57 minutes. Where there are seven sub-districts submerged by the tsunami with a distance of about 160 meters to 1.6 kilometers.


2021 ◽  
Vol 35 (1) ◽  
Author(s):  
Della Ayu Lestari ◽  
Novi Sofia Fitriasari ◽  
Taufiq Ejaz Ahmad ◽  
Amien Rais ◽  
Dhea Rahma Azhari

Pandeglang Regency is an area that has the potentiel to be hit by tsunamis. The plate subduction paths of Indo-Australia and Anak Krakatau Volcano make Pandeglang Regency a region with a high tsunami potential. One step that can be taken to overcome and minimize losses is to do spatial planning to protect it against potential tsunami damage. This research aimed to evaluate the spatial area of Pandeglang Regency based on the identification of potential tsunami hazards.  The concept of modelling the tsunami inundation height developed by Berryman and based on Head Regulation No.4 of 2012 of the Indonesian National Board for Disaster Management has been used to identify potential tsunami hazards. The modelling was carried out by calculating the potential distribution of tsunami wave heights in coastal areas.  Three scenarios were used to estimate the distribution. The results showed that the first scenario predicted a maximum tsunami height   of 7.5 meters above sea level with the furthest tsunami inundation reaching 1,700.12 meters. Second scenario predicted maximum height of 15 meters, with the furthest tsunami inundation reaching 3,384.62 meters. Meanwhile, the last scenario was able to predict a height of 20 meters and showed the furthest tsunami inundation reaching 5.155,11 meters. These results proved that in all scenarios, the widest inundation would occur in Panimbang Regency. This is due to the relatively small variations in roughness and slope of the surface. The same condition also occurs in the last two scenarios, in which Sumur District was the area most ffected. Therefore, the spatial plan of Pandeglang Regency needs to be evaluated and the function of residential area changed to reduce and prevent large losses.


2019 ◽  
Author(s):  
H. Basak Bayraktar ◽  
Ceren Ozer Sozdinler

Abstract. In this study, time-dependent probabilistic tsunami hazard analysis (PTHA) is performed for Tuzla, Istanbul in the Sea of Marmara, Turkey, using various earthquake scenarios of Prince Island Fault within next 50 and 100 years. Monte Carlo (MC) simulation technique is used to generate a synthetic earthquake catalogue which includes earthquakes having magnitudes between Mw 6.5 and 7.1. This interval defines the minimum and maximum magnitudes for the fault in the case of entire fault rupture which depends on the characteristic fault model. Based on this catalogue, probability of occurrence and associated tsunami wave heights are calculated for each event. The study associates the probabilistic approach with tsunami numerical modelling. Tsunami numerical code NAMI DANCE was used for tsunami simulations. According to the results of the analysis, distribution of probability of occurrence corresponding to tsunami hydrodynamic parameters are represented. Maximum positive and negative wave amplitudes show that tsunami wave heights up to 1 m have 65 % probability of exceedance for next 50 years and this value increases by 85 % in Tuzla region for next 100 years. Inundation depth also exceeds 1 m in the region with probabilities of occurrence of 60 % and 80 % for next 50 and 100 years, respectively. Moreover, Probabilistic inundations maps are generated to investigate inundated zones and the amount of water penetrated inland. Probability of exceedance of 0.3 m wave height, ranges between 10 % and 75 % according to these probabilistic inundation maps and the maximum inundation distance calculated among entire earthquake catalogue is 60 m in this test site. Furthermore, at synthetic gauge points which are selected along the western coast of the Istanbul by including Tuzla coasts. Tuzla is one of the area that shows high probability exceedance of 0.3 m wave height, which is around 90 %, for the next 50 years while this probability reaches up to more than 95 % for the next 100 years.


2020 ◽  
Vol 20 (6) ◽  
pp. 1741-1764
Author(s):  
Hafize Basak Bayraktar ◽  
Ceren Ozer Sozdinler

Abstract. In this study, time-dependent probabilistic tsunami hazard analysis (PTHA) is performed for Tuzla, Istanbul, in the Sea of Marmara, Turkey, using various earthquake scenarios of Prince Island Fault (PIF) within the next 50 and 100 years. The Monte Carlo (MC) simulation technique is used to generate a synthetic earthquake catalogue, which includes earthquakes having moment magnitudes between Mw6.5 and 7.1. This interval defines the minimum and maximum magnitudes for the fault in the case of an entire fault rupture, which depends on the characteristic fault model. Based on this catalogue, probability of occurrence and associated tsunami wave heights are calculated for each event. The study associates the probabilistic approach with tsunami numerical modeling. The tsunami numerical code NAMI DANCE was used for tsunami simulations. According to the results of the analysis, distribution of probability of occurrence corresponding to tsunami hydrodynamic parameters is represented. Maximum positive and negative wave amplitudes show that tsunami wave heights up to 1 m have 65 % probability of exceedance for the next 50 years and this value increases by 85 % in the Tuzla region for the next 100 years. Inundation depth also exceeds 1 m in the region with probabilities of occurrence of 60 % and 80 % for the next 50 and 100 years, respectively. Moreover, probabilistic inundation maps are generated to investigate inundated zones and the amount of water penetrated inland. Probability of exceedance of 0.3 m wave height ranges between 10 % and 75 % according to these probabilistic inundation maps, and the maximum inundation distance calculated in the entire earthquake catalogue is 60 m in this test site. Furthermore, synthetic gauge points are selected along the western coast of Istanbul by including Tuzla coasts. Tuzla is one of the areas that shows high probability exceedance of 0.3 m wave height, which is around 90 %, for the next 50 years while this probability reaches up to more than 95 % for the next 100 years.


2019 ◽  
Vol 125 ◽  
pp. 09005
Author(s):  
Muh Aris Marfai ◽  
Hendy Fatchurohman ◽  
Ahmad Cahyadi

In recent years, Tourism activities in Gunungkidul Coastal Area rapidly increased. A large number of tourists visiting the coast considered as elements at risk that are exposed to tsunami hazards. Disaster infrastructures provided by the government e.g. hazard maps, evacuation routes, and locations for assembly points are inadequate. The tsunami inundation models provided by the government are based on national topographic maps (RBI), resulting in inaccurate models. DEM generation using UAV Photogrammetry produces high spatial resolution data that results in more accurate tsunami inundation model. The results of the model using UAV photogrammetry are also capable of producing several inundation scenarios and determine the safe areas that can be used for temporary evacuation sites. The use of UAV photogrammetry for tsunami inundation models provides many advantages including low cost and accurate model results. Evaluation of hazard maps and assembly points using UAV Photogrammetry modeling lead to more effective and less time-consuming on the evacuation process.


2014 ◽  
Vol 14 (9) ◽  
pp. 2521-2527 ◽  
Author(s):  
Y. Wang ◽  
A.-F. Tao ◽  
J.-H. Zheng ◽  
D.-J. Doong ◽  
J. Fan ◽  
...  

Abstract. Due to the potential disasters induced by rogue waves, research in this field has increased rapidly in the last 2 decades. However, there are still a lot of open questions left, including some classic ones, such as whether the rogues waves are just rare events or not. One of the key reasons is that not enough of the observed rogue waves have been investigated. China has a wide sea area, but none of the research has addressed the observed rogue waves. In the present study, 1 year of observed wave data from Jiangsu coastal area, China, are analyzed. It is found that rogue waves are present, although the wave heights are not very large; furthermore, the probability of their occurrence is similar to the Rayleigh distribution prediction, due to the local silty coastal topography. The characteristics of rouge waves are investigated and the results indicate that a new type of rogue wave may exist.


Sign in / Sign up

Export Citation Format

Share Document