scholarly journals Feasibility Study of Recycled Plastic Waste as Fine Aggregate in Concrete

2020 ◽  
Vol 184 ◽  
pp. 01084
Author(s):  
K. Sai Gopi ◽  
Dr. T. Srinivas ◽  
S. P. Raju V

Nowadays, Environmental concern towards plastic waste rises because of its low degradability and creating problems like chunking sewer lines, drainages, waterways, filling landfills, health problems, etc. The best approach is recycling and reuses plastic waste. Increase in the production of plastic day by day but, very little was recycled. On the other hand, huge demand for concrete in the construction industry. Utilization of recycled plastic waste in the production of sustainable concrete by partial replacement of fine aggregate. This study has been investigated the utilization of two types of recycled plastic waste Polyethylene Terephthalate (PET) and Polypropylene (PP) as fine aggregate in concrete. M30 grade of concrete has been used by partial replacement of fine aggregate (River Sand) with recycled plastic waste in the percentage of 5, 10, 15, 20, and 25. The workability and compressive strength results are checked to find the acceptable percentage of incorporation of PET and PP in concrete. From the results, it is observed that the workability is decreased as the percentage of recycled plastic waste is increased. The Optimum Percentage of replacement of PET is 10%. PP has shown a marginal reduction in compressive strength for 5% replacement.

This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


Conventionally used cement –a primary binder also a necessitate element in producing concrete rates first in the construction industry. Production of conventional cement requires a greater skill and is energy intensive. The usage of waste materials in the production of concrete and reduction in cement content was only the possible alternative in the past decade. Associated risks with the production of Ordinary Portland Cement are well known. A greener aided with a natural friendly claim can be made only with the usage of the waste materials and reduction in evolving respiration gas to the atmosphere. Almost all works are carried out using source material fly ash, with fine aggregate and coarse aggregate. Concrete plays a vital role in the construction industry and on the other hand, river sand; one of the essential material has become very expensive which is a scarce material. Depletion of sand is a hectic issue due to increased usage of sand in construction. No other replacement materials such as quarry rock dust is not concentrated in casting geopolymer specimens. Even though in some research papers the replacement materials are added only in partial replacement without aiming on 100% replacement. Many researches mainly focus towards test results of GPC specimens using steel fibers, glass fibers. But the study related to natural fibers and hybrid fibers are found scarce. The main part of this work aimed at characterizing the engineering strength properties of geopolymer concrete by 100% replacement of fine aggregate with quarry rock dust. Hence, combination of flyash and quarry rock dust in GPC have been considered for evaluating the mechanical properties of geopolymer concrete. Also, investigation focuses on incorporation of three different fibers namely polypropylene fibers(PF), coir fibers(CF) and hybrid fibers(HF) in different percentage of proportions such as 0.5%,1%,and 1.5% to determine the maximum strength properties of GPC.


Concrete is an important construction material widely used in the construction industry nowadays. It is blended material consisting of cement, fine aggregate, coarse aggregate and water. Generally the use of river sand as fine aggregate in our country is very widespread in industry. This paper mainly focuses on the study of strength properties of concrete in which river sand is replaced with sea sand as fine aggregate. In addition to it, Quarry Dust when added gains strength. Different mix proportions was replaced partially in 5%, 10%, 15% by Sea sand and Quarry dust. The strength of concrete for various mix proportions are carried out and tested for 14, 28, 56 days of curing. From the results obtained, with the replacement of river sand by sea sand along with well graded quarry dust upto to 15% increases the strength of concrete.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


2020 ◽  
Vol 13 (2) ◽  
pp. 47-53
Author(s):  
Arivalagan. S ◽  
Dinesh Kumar K S A ◽  
Sudhakar R

Concrete is the most widely used construction material today. The constituents of concrete are coarse aggregate, fine aggregate, coarse aggregate and water. Concrete plays a major role in the construction industry and a large quantum of concrete is being utilized. River sand, which isone of the constituent used in the production of conventional concrete, has become expensive and also a scarce material. In view of this,the utilization of demolished aggregate which isa waste material has been accepted as building material in many countries for the past three decades. The demand of natural sand in the construction industry has increased a lot resulting in the reduction of sources and an increase in price. Thus an increased need to identify a suitable alternative material from industrial waste in place of river sand, that is eco-friendly and inexpensive construction debris i.e fresh concrete being extensively used as an alternative to the sand in the production of concrete. There is an increase in need to find new alternative materials to replace river sand so that excess river erosion is prevented and high strength concrete is obtained at lower cost. One such material is building construction debris: a by-product obtained during construction and demolition waste. An experimental investigation is carried out on M 25 concrete containing debris during construction in the different range of 20%, 30% & 40% by weight of sand. Material was produced, tested and compared with conventional concrete in terms of workability and strength. These tests were carried out on standard cube of 150×150×150 mm and beam of 700×150×150 mm for 28 days to determine the mechanical properties of concrete.


Author(s):  
Cornelius Ngunjiri Ngandu

In recent past years, plastic waste has been a environmental menace. Utilization of plastic waste as fine aggregate substitution could reduce the demand and negative impacts of sand mining while addressing waste plastic challenges.This study aims at evaluating compressive strengths prediction models for concrete with plastic—mainly recycled plastic—as partial replacement or addition of fine aggregates, by use of artificial neural networks (ANNs), developed in OCTAVE 5.2.0 and datasets from reviews. 44 datasets from 8 different sources were used, that included four input variables namely:- water: binder ratio; control compressive strength (MPa); % plastic replacement or additive by weight and plastic type; and the output variable was the compressive strength of concrete with partial plastic aggregates.Various models were run and the selected model, with 14 nodes in hidden layer and 320,000 iterations, indicated overall root mean square error (RMSE) , absolute factor of variance (R2), mean absolute error (MAE) and mean absolute percentage error (MAPE) values of 1.786 MPa, 0.997, 1.329 MPa and 4.44 %. Both experimental and predicted values showed a generally increasing % reduction of compressive strengths with increasing % plastic fine aggregate.The model showed reasonably low errors, reasonable accuracy and good generalization. ANN model could be used extensively in modeling of green concrete, with partial waste plastic fine aggregate. The study recommend ANNs models application as possible alternative for green concrete trial mix design. Sustainable techniques such as low-cost superplasticizers from recycled material and cost-effective technologies to adequately sizing and shaping plastic for fine aggregate application should be encouraged, so as to enhance strength of concrete with partial plastic aggregates.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 443
Author(s):  
S Dhanasekar ◽  
S Vinothraj ◽  
P T Ravichandran ◽  
A Aravindan

Growth in construction industry is linked to the growth of infrastructure sector and the building industry.  Construction industry has been growing @ 8-10% per annum and is likely to maintain the same in year to come. Concrete is widely used as a construction material due to inherent advantages. Booming economic growth led to indiscriminate and unregulated mining of river sand for construction which resulted in erosion of river bank and damage to bio-diversity. The demand for river sand is only expected to grow as the demand for housing and infrastructure is ever increasing. Hence, there is a pertinent need to look for alternate materials to river sand.This study explores use of ceramic tile waste as an optionto the replacement of river Sand in terms of suitability, acceptability, and viability. In this study the ceramic tile waste is being used to replace the conventional sand i.e. fine aggregate (FA). The ceramic fine aggregate (CFA) are used in concrete by replacing FA by 10%, 20%, 24%, 28%, 30% and 40%. In order to compare the results of conventional concrete (CC) with CFA concrete a concrete design mix of M50 is produced with various proportions of CFA material. Due to the good bonding nature of ceramic materials with cement it increases the strength of the concrete with respect to the increase of CFA material. The durability properties of concrete also seems to be performed well because, the CFA materials are consist of good chemical resistance nature. From the study it is found that the percentage of replacement for FA with CFA material is 20%, within which the performance of CFA concrete is better and all the results are attained within the design limit and it help to solve the disposal problem to the environment.  


Concrete is the most widely used composite material today. The constituents of concrete are coarse aggregate, fine aggregate, binding material, and water. A rapid increase in construction activities leads to an acute shortage of conventional construction materials. Conventionally, sand is being used as fine aggregate in concrete. The function of the fine aggregate is to assist in producing workability ad uniformity in the mixture. The river deposits are the most common source of fine aggregate. So there are great demands within the construction industries for river sand as fine aggregate used in the production of concrete. This has created a very difficult situation, also there is great fear from environmentalist and the ecology will be distorted. Hence, the need to find the materials which are affordable and available partially or totally replaced river sand in the production of concrete. Hence we are forced to think the alternative materials. This report aims to present the study done to establish scientific data regarding the compressive strength, tensile strength and flexural strength of concrete on partial replacement of fine aggregate with laterite soil in concrete mix of M50 grade. The sand shall be replaced gradually in the mentioned grade of concrete by 0%, 10%, 20% and 30% with laterite soil and the specimen shall be tested at curing intervals of 3days, 7days, and 28days. For compressive strength and at curing interval of 3days, 7days, and 28days for tensile strength as well as for flexural strength


Author(s):  
Sindhu Vaardini U ◽  
Pon Soundarya M

Disposal of large quantity of plastic causes land, water, and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed shredded plastic waste in concrete. Several tests are conducted such as compressive strength of cube, compressive strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using shredded plastic aggregate. Replacement of fine aggregate weight by 0%, 5%, 10%, 15%, 20% with shredded plastic fine (PF) aggregate and manufactured sand (M-Sand). Totally 30 cubes, 30 cylinders and 30 prisms are casted to identify the compressive strength, cylindrical compressive strength, and flexural strength respectively. Casted specimens are tested at 7, 14 and 28 days. The identified results from concrete using shredded plastic aggregate are compared with conventional concrete. Result shows that initially there is increase in mechanical properties then there is reduction in mechanical properties due to addition of shredded plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and shredded plastic aggregate.


Sign in / Sign up

Export Citation Format

Share Document