scholarly journals The Electrical Motorcycle Charger for Application in a Residence

2020 ◽  
Vol 186 ◽  
pp. 03002
Author(s):  
Chaiyan Jettanasen ◽  
Chaichan Pothisarn

The aim of this paper is to design the charger for an electric motorcycle and analyze the behavior of voltage and current value during charging. The AC voltage supply from a residence is converted to DC voltage to charge the energy storage system by controlling the voltage and current values suitable for the charge process in all periods. The designed charger is based on the principle of a buck converter with using constant current and constant voltage technique in order to charge a 12 V, 21 Ah lead-acid battery inside the electric motorcycle. By considering the results, the first state of battery charging is a constant current mode by using the current of 5 A with the initial voltage of 55 V. In the second mode, the battery charging is done by constant voltage of 72 V and the current is reduced until the battery is full. Moreover, the charging time is about 6-8 hours.

Author(s):  
Pi-Yun Chen ◽  
Kuei-Hsiang Chao ◽  
Yu-Sheng Tsai

This paper aims to present a smart high speed battery charger, powered by a photovoltaic module array, for a LiFePO4 battery as a solar energy storage device. With a battery charging strategy, the presented battery charger involves a Buck converter as the core equipped with a simple maximum power point (MPP) tracker. Considering complexity reduction and easy hardware implementation, a constant voltage MPP tracking approach is adopted such that the maximum amount of output power can be delivered to the load in response to an arbitrary change in the solar radiation. A smart two-stage charging strategy, with a constant current mode followed by a constant voltage mode, is employed in such a way that the battery charge process can be accelerated largely, while the damage caused by overcharging can be prevented. In the end, the performance of this proposal is validated experimentally.


2015 ◽  
Vol 787 ◽  
pp. 27-31
Author(s):  
M. Gajendiran ◽  
P.M. Sivaram ◽  
N. Nallusamy

In the present work the thermal performance of Phase Change Material (PCM) based solar thermal energy storage system under the influence of different heat transfer fluids (HTF) have been investigated. Water, Ethylene Glycol–water and Copper nanofluid are selected as HTF. Paraffin is used as PCM and encapsulated in cylindrical capsules. The thermal energy storage (TES) tank acts as a storage unit consisting PCM capsules packed in three beds surrounded by water, which acts as sensible heat storage (SHS) material. HTF circulated by a pump transfers heat from solar flat plate collector (FPC) to the TES tank. 25% ethylene glycol -75% water HTF is prepared by mixing ethylene glycol (EG) with water. Copper-distilled water nanofluids (0.3% by weight) are prepared using prolonged sonication with sodium dodecyl benzene sulphonate (SDBS) as the surfactant. Various performance parameters such as charging time, instantaneous heat stored, cumulative heat stored and system efficiency are studied for various HTFs. It is found that the charging time is reduced by 33.3% for copper nanofluid and 22.2% for ethylene glycol- water mixture HTFs. It is also observed that there is an increase in system efficiency and cumulative heat stored with reference to charging time for these HTFs when compared with conventional HTF 1 i.e. water.


2013 ◽  
Vol 23 (04) ◽  
pp. 1350062 ◽  
Author(s):  
GUOHUA ZHOU ◽  
BOCHENG BAO ◽  
JIANPING XU

The complex dynamics and coexisting fast-slow scale instability in current-mode controlled buck converter with constant current load (CCL), operating in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM), are investigated in this paper. Via cycle-by-cycle computer simulation and experimental measurement of current-mode controlled buck converter with CCL, it is found that a unique fast-slow scale instability exists in the second-order switching converter. It is also found that a unique period-doubling accompanied by Neimark–Sacker bifurcation exists in this simple second-order converter, which is different from period-doubling or Neimark–Sacker bifurcations reported previously. Based on a nonlinear discrete-time model and the corresponding Jacobian, the effects of CCL and input voltage on the dynamics of current-mode controlled buck converter are investigated and verified theoretically. Fixed point analysis for slow-scale low-frequency oscillation is also given to verify the dynamics and the coexisting fast-slow scale instability.


Author(s):  
M. S. A. Mustaza ◽  
M. A. M. Ariff ◽  
Sofia Najwa Ramli

Energy storage system (ESS) plays a prominent role in renewable energy (RE) to overcome the intermittent of RE energy condition and improve energy utilization in the power system. However, ESS for residential applications requires specific and different configuration. Hence, this review paper aims to provide information for system builders to decide the best setup configuration of ESS for residential application. In this paper, the aim is to provide an insight into the critical elements of the energy storage technology for residential application. The update on ESS technology, battery chemistry, battery charging, and monitoring system and power inverter technology are reviewed. Then, the operation, the pro, and cons of each variant of these technologies are comprehensively studied. This paper suggested that the ESS for residential ESS requires NMC battery chemistry because it delivers an all-rounded performance as compared to other battery chemistries. The four-stages constant current (FCC) charging technique is recommended because of the fast charging capability and safer than other charging techniques reviewed. Next, the battery management system (BMS) is recommended to adapt in advance machine learning method to estimate the state of charge (SOC), state of health (SOH) and internal temperature (IT) to increase the safety and prolong the lifespan of the batteries. Finally, these recommendations and solutions aimed to improve the utilization of RE energy in power system, especially in residential ESS application and offer the best option that is available on the shelf for the residential ESS application in the future.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 221 ◽  
Author(s):  
Xu-Feng Cheng ◽  
Yong Zhang ◽  
Chengliang Yin

The bidirectional inverting buck-boost converter (BIBBC) has a simple structure and a wide voltage ratio. It can be used in the battery supercapacitor hybrid energy storage system (BSHESS) and the motor drive system. However, the traditional continuous conduction mode (CCM) BIBBC will have severe switching loss. The triangular current mode (TCM) BIBBC can reduce the switching loss, but it will increase core loss and filter capacitance. To solve these problems, this paper proposes a new zero voltage switching (ZVS) BIBBC using a coupled inductor. This ZVS BIBBC will provide ZVS conditions for both transistors whether in positive operation or negative operation. Meanwhile, this ZVS BIBBC has small core losses and filter capacitance, and can be used simply. Finally, experimental results obtained from these BIBBC experimental prototypes are presented to validate the soft-switching achieving and the efficiency improvement performance. Experimental results show that both transistors of the ZVS BIBBC achieve ZVS turn-on conditions. The efficiency of the ZVS BIBBC increased by up to 10 percent compared to the traditional CCM BIBBC at heave load, and by up to 1.5 percent compared to the TCM BIBBC at a light load.


2018 ◽  
Vol 33 (10) ◽  
pp. 8259-8269 ◽  
Author(s):  
Yang Chen ◽  
Bin Yang ◽  
Zhihao Kou ◽  
Zhengyou He ◽  
Guangzhong Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document