scholarly journals A Smart Two-Stage Charging Strategy Implemented on a PV Module Array with a Simple MPPT for LiFePO4 Batteries

Author(s):  
Pi-Yun Chen ◽  
Kuei-Hsiang Chao ◽  
Yu-Sheng Tsai

This paper aims to present a smart high speed battery charger, powered by a photovoltaic module array, for a LiFePO4 battery as a solar energy storage device. With a battery charging strategy, the presented battery charger involves a Buck converter as the core equipped with a simple maximum power point (MPP) tracker. Considering complexity reduction and easy hardware implementation, a constant voltage MPP tracking approach is adopted such that the maximum amount of output power can be delivered to the load in response to an arbitrary change in the solar radiation. A smart two-stage charging strategy, with a constant current mode followed by a constant voltage mode, is employed in such a way that the battery charge process can be accelerated largely, while the damage caused by overcharging can be prevented. In the end, the performance of this proposal is validated experimentally.

Author(s):  
Indhana Sudiharto ◽  
Moch. Igam Rahadyan ◽  
Ony Asrarul Qudsi

This research presents a battery charger design that can charge faster than using a PWM type solar charge controller (SCC). SCC is often operated when the battery capacity is 80% so that the charging current that can be provided is only 10% to 20% of the battery capacity. The battery charging method applied in this study uses the principle of fast charging by adjusting the value of the current and the output voltage value of the buck converter. Fast charging has its own characteristic, obviously, the charging rate that is greater than the usual charging method, which is up to 1C of the battery capacity. The principle of fast charging in this study uses the constant current / constant voltage method. This converter is designed with the ability to produce current by the charging rate of 1C from a 12Ah battery capacity of 12 A and an output voltage of 16.8 V. To ensure that the output of the converter matches the setpoint, the duty cycle value is adjusted using fuzzy control. Based on the results obtained from the simulation, the control of this study obtained an output current 12  Amperes with error ripple current around 8.3%. The SOC on this battery increased by 75.74% in 45 minutes.


2020 ◽  
Vol 186 ◽  
pp. 03002
Author(s):  
Chaiyan Jettanasen ◽  
Chaichan Pothisarn

The aim of this paper is to design the charger for an electric motorcycle and analyze the behavior of voltage and current value during charging. The AC voltage supply from a residence is converted to DC voltage to charge the energy storage system by controlling the voltage and current values suitable for the charge process in all periods. The designed charger is based on the principle of a buck converter with using constant current and constant voltage technique in order to charge a 12 V, 21 Ah lead-acid battery inside the electric motorcycle. By considering the results, the first state of battery charging is a constant current mode by using the current of 5 A with the initial voltage of 55 V. In the second mode, the battery charging is done by constant voltage of 72 V and the current is reduced until the battery is full. Moreover, the charging time is about 6-8 hours.


Author(s):  
Mustapha El Alaoui ◽  
Fouad Farah ◽  
Karim El khadiri ◽  
Ahmed Tahiri ◽  
Rachid El Alami ◽  
...  

In this work, the design and analysis of new Li-Ion battery charger interface using the switching-based technique is proposed for high efficiency, high speed charge and low area. The high efficiency, the lower size area and the fast charge are the more important norms of the proposed Li-Ion battery charger interface. The battery charging is completed passes to each charging mode: The first mode is the trickle charge mode (TC), the second mode is the constant current mode (CC) and the last mode is the constant voltage mode (CV), in thirty three minutes. The new Li-Ion battery charger interface is designed, simulated and layouted in Cadence software using TSCM 180 nm CMOS technology. With an input voltage V<sub>IN</sub> = 4.5 V, the output battery voltage (V<sub>BAT</sub>) may range from 2.7 V to 4.2 V and the maximum charging battery current (I<sub>BAT</sub>) is 1.7 A. The peak efficiency reaches 97% and the total area is only 0.03mm<sup>2</sup> .


2013 ◽  
Vol 23 (04) ◽  
pp. 1350062 ◽  
Author(s):  
GUOHUA ZHOU ◽  
BOCHENG BAO ◽  
JIANPING XU

The complex dynamics and coexisting fast-slow scale instability in current-mode controlled buck converter with constant current load (CCL), operating in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM), are investigated in this paper. Via cycle-by-cycle computer simulation and experimental measurement of current-mode controlled buck converter with CCL, it is found that a unique fast-slow scale instability exists in the second-order switching converter. It is also found that a unique period-doubling accompanied by Neimark–Sacker bifurcation exists in this simple second-order converter, which is different from period-doubling or Neimark–Sacker bifurcations reported previously. Based on a nonlinear discrete-time model and the corresponding Jacobian, the effects of CCL and input voltage on the dynamics of current-mode controlled buck converter are investigated and verified theoretically. Fixed point analysis for slow-scale low-frequency oscillation is also given to verify the dynamics and the coexisting fast-slow scale instability.


2011 ◽  
Vol 57 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Konrad Skup ◽  
Paweł Grudziński ◽  
Piotr Orleański

Application of Digital Control Techniques for Satellite Medium Power DC-DC Converters The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter is based on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage and current mode stabilization that was implemented using VHDL. The described controllers are based on a classical digital PID controller. The converter used for testing is a 200 kHz, 750W buck converter with 50V/15A output. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.


Author(s):  
Heri Suryoatmojo ◽  
Indra Anugrah Pratama ◽  
Soedibyo .

In order to develop renewable energy, it also needs to enhance the developing of supporting elements. For example, lithium-ion batteries as a component of energy storage. Lithium-ion batteries (Li-ion) have been chosen as energy storage devices for portable equipment, unmanned Aerial Vehicle (UAV) and grid storage systems. But there is a problem such as the process of charging the battery for UAV. Conventional converters used in those chargers have disadvantages such as limited power, lower voltage gain and also high current stress. Therefore, such converters are not efficient to be used for charging the battery. This paper proposes a cascaded bidirectional buck-boost converter for charging the battery. This converter can be operated bidirectional and have better rated power and higher voltage gain. Also, this topology has the same polarity with the input. From the test results, the converter can work in either forward or backward power flow. This converter is working in both buck or boost mode and has an efficiency of 83% in buck mode and 81% for boost mode. The charging process is about 83 minutes until SOC approximately 90 – 95.Keywords: battery charger, cascaded bidirectional buck – boost converter, constant current, li-ion introduction.


Author(s):  
Ahmad Zidan Falih ◽  
Mohammad Zaenal Efendi ◽  
Farid Dwi Murdianto

Energy dependency is increasing along with the increase in population growth rate, while the fossil energy is decreasing. Alternative energy such as solar energy is one solution to provide renewable energy, but solar energy cannot provide an intense supply of energy. Therefore, the equipment needs an energy storage. The battery has important role in energy storage with the performance of the battery that need an attention. The method and type of battery used  must be considered to maintain battery lifetime and  reduce overcharging. The purpose of this research is to understand the process of fast charging the CC-CV (Constant Current Constant Voltage) method on Lithium-Ion battery which is expected to reduce battery overcharging. In this method, the current is maintained constant until certain conditions then followed by constant voltage to prevent overcharging. The voltage from the solar panel is very high, voltage reduction is needed as the charging voltage for the battery. The DC-DC Converter used is Buck Converter which is given Fuzzy Type-2 algorithm to maintain a current of 10 Ampere during CC conditions and  a voltage of 14.4 Volt during CV conditions with switch of CC conditions to CV conditions on SoC 99.25%.Keywords: battery charging, buck converter, CC-CV, lithium-ion, type-2 fuzzy.


Sign in / Sign up

Export Citation Format

Share Document