scholarly journals Effect of solar cell structure on the radiation resistance of an InP solar cell

2020 ◽  
Vol 191 ◽  
pp. 01005
Author(s):  
Halima Mazouz ◽  
Abderrahmane Belghachi ◽  
Pierre-Olivier Logerais

Effects of electron irradiation-induced deep level defects have been studied on both n/p and p/n Indium Phosphide (InP) solar cells with very thin emitters. The simulation results reveal that the n/p structure offers a somewhat better short-circuit current and that the p/n structure renders an improved open-circuit voltage, not only before electron irradiation but also after 1 MeV electron irradiation with 5×1015 electrons per cm2 fluence. Further, the calculated findings highlight that the n/p solar cell structure is more resistant than that of a p/n structure.

2019 ◽  
Vol 34 (04) ◽  
pp. 2050053
Author(s):  
Fatemeh Ghavami ◽  
Alireza Salehi

In this paper, the performance of copper-indium-gallium-diselenide Cu(In,Ga)Se2 solar cell, with ZnO window layer, ZnSe buffer layer, CIGS absorber layer and InGaP reflector layer was studied. The study was performed using the TCAD Silvaco simulator. The effects of grading the band gap of CIGS absorber layer, the various thicknesses and doping concentrations of different layers have been investigated. By optimizing the solar cell structure, we have obtained a maximum open circuit voltage of 0.91901 V, a short circuit current density of 39.89910 mA/cm2, a fill factor (FF) of 86.67040% and an efficiency of 31.78% which is much higher than the values for similar CIGS solar cells reported so far.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Sivakumar Parthasarathy ◽  
P. Neelamegam ◽  
P. Thilakan ◽  
N. Tamilselvan

Multicrystalline silicon solar cell and its module with 18 cells connected in series were mounted on an inclined rack tilted 12° South positioned at latitude of 12.0107° and longitude of 79.856°. Corresponding solar irradiance was measured using an optical Pyranometer. Measured irradiance, open circuit voltage (), and short circuit current () values were analyzed. values of both the cell and module were found saturated at above the critical value of illuminations which were different from each other. The integrated daily efficiency for the cell and module were ~10.25% and ~9.39%, respectively, that were less than their respective standard test condition’s value. The reasons for this drop in efficiencies were investigated and reported.


2008 ◽  
Vol 1101 ◽  
Author(s):  
Chang-Wei Liu ◽  
Zingway Pei ◽  
Shu-Tong Chang ◽  
Ren-Yui Ho ◽  
Min-Wei Ho ◽  
...  

AbstractOne of the parameters that limit the efficiency of a thin film solar cell, especially the a-Si and the nc-Si solar cell is the cell thickness. Although thicker film can absorb most of the sun light, the optical generated carriers will recombination through the numerous gap states in the film that obtained lower short circuit current and fill factor. In the controversy, thinner film could not absorb enough sun light that also limit the short circuit current. In this works, we utilize nanowire structure to solve the conflict between the light absorption and the carrier transport. The designed structure has ZnO:Al nanowire array on the substrate. The p-i-n a-Si solar cell structure is grown along the surface of each ZnO: Al nanowire sequentially. Under sunlight illumination, the light is absorbed in the axis direction of the nanowire. However, the carrier transport is along the radial direction of the solar cell. Therefore, the long nanowire could absorb most of the solar light. In the mean time, the thickness of the solar cell still is thin enough for photo-generated carrier transport. The dependence of short circuit current, open circuit voltage and fill factor to the length, diameter and density of ZnO:Al nanowires were simulated.


2014 ◽  
Vol 633-634 ◽  
pp. 509-512
Author(s):  
Ping Yang ◽  
Xiang Bo Zeng ◽  
Xiao Dong Zhang ◽  
Zhan Guo Wang

Silicon film as a surface passivation layer is reported to reduce surface recombination on silicon nanowires (SiNWs) and thus enable to improve SiNW solar cell (SC) performance. A question yet to be answered regards the link between the silicon film assets and the solar cell performances. We investigated the effect of the properties of silicon films on the SiNWs SC performances by adjusting hydrogen dilution. Our results showed that the open-circuit voltage (Voc) and short-circuit current density (Jsc) of SiNWs SC increase until hydrogen dilution 10 and then decrease. An open-circuit voltage of 0.397 V and short-circuit current density of 18.42 mA/cm2 are achieved at optimized hydrogen dilution. Based on the analysis of silicon film properties we proposed that the increase of defect density with hydrogen dilution was the main cause for the deterioration of SiNWs SC performance.


2007 ◽  
Vol 1012 ◽  
Author(s):  
Harumi Moreno Garcia ◽  
O. Gómez-Daza ◽  
J. Campos ◽  
M. T. S. Nair ◽  
P. K. Nair

AbstractCdS and PbS are well known semiconductor materials. Starting in 1969 and into 1970's CdS-PbS cells were reported with open circuit voltage (Voc) up to 450 mV and short circuit current density (Jsc) < 1 mA/cm2. However, further reports are scarce. These two materials are also the most investigated by chemical deposition technique. In this work we revisit this type of photovoltaic junctions and present the photovoltaic behavior of distinct type of cell structures prepared by chemical deposition: glass/CdS/PbS/Ag, SnO2:F/CdS/PbS/Ag, and SnO2:F/CdS/(Bi2S3 or/and CdSe)/PbS/Ag. Depending on the cell type, Voc of > 500 mV or Jsc of > 3 mA/cm2 could be obtained under illumination of 1-3 kW/m2. This work opens up possibilities for developing simple solar cell structures by sequential chemical deposition of semiconductors.


2014 ◽  
Vol 1070-1072 ◽  
pp. 616-619
Author(s):  
Wen Bo Xiao ◽  
Jin Dai ◽  
Guo Hua Tu ◽  
Hua Ming Wu

The dye-sensitized solar cell performances influenced by radiant intensity and illuminated area in concentrating photovoltaic system are investigated experimentally and discussed theoretically. The results show that, under the same irradiated cells area, the short-circuit current is linearly increasing with the radiant intensity and the open-circuit voltage follows a logarithmic function of the radiant intensity. And, it is turned out that the short-circuit current and open-circuit voltage are obviously enhanced by increasing the illuminated cells surface area at the same radiant intensity. However, that growth trends will decline with an increase of the illuminated area. The reason is more defects involved in the process of increasing illumination area. All results can be interpreted using an equivalent circuit of a single diode model. A good agreement can be observed from the fitting curves. It is of great significance for current photovoltaic research.


2007 ◽  
Vol 280-283 ◽  
pp. 1161-1162 ◽  
Author(s):  
Zhi Jian Wan ◽  
Yong Huang ◽  
Hou Xing Zhang ◽  
Hai Feng Li

Polycrystalline silicon layers were grown on AlN ceramic substrates in a rapid thermal chemical vapor deposition system at high temperature (~1150°C). Larger columnar grains, > 5µm in size, were obtained by the zone melting recrystallization (ZMR) technique. The p-n junction is formed by a phosphorous diffusion process to make a solar cell. Solar cell devices based on this Si layer result possess an open-circuit voltage of about 0.17V and a short-circuit current of about 6.6mA/cm2.


2011 ◽  
Vol 347-353 ◽  
pp. 3666-3669
Author(s):  
Ming Biao Li ◽  
Li Bin Shi

The AMPS-ID program is used to investigate optical and electrical properties of the solar cell of a-SiC:H/a-Si1-xGex:H/a-Si:H thin films. The short circuit current density, open circuit voltage, fill factor and conversion efficiency of the solar cell are investigated. For x=0.1, the conversion efficiency of the solar cell achieve maximum 9.19 % at the a-Si1-xGex:H thickness of 340 nm.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Hedi Trabelsi ◽  
Younes Boujelbene

This paper explains the need for renewable energies for “green revival” of the economy. First, we will analyze the overall context of the double crisis. Then we will focus on “green recovery” as a solution for these two crises. Finally, we will study the example of the photovoltaic system as a source of renewable energy by presenting and comparing four types of MPPT commands such as: Perturb and Observe, Incremental Conductance, Fractional Open-Circuit Voltage (FOV) and Fractional Short-Circuit Current (FCC). The Matlab-Simulink environment will be used to analyze and interpret the simulation results of these algorithms and therefore we show the performance and limits of each algorithm.


Sign in / Sign up

Export Citation Format

Share Document