scholarly journals Thermal response of energy foundations installed in unsaturated residual soils

2020 ◽  
Vol 205 ◽  
pp. 05021
Author(s):  
Michael B. Reiter ◽  
Thaise da S. O. Morais ◽  
Cristina de H.C. Tsuha ◽  
Tugce Baser

This study focuses on the thermal response of energy foundations with different piping geometries installed in unsaturated soil. Energy foundations are an efficient alternative to traditional space heating and cooling approaches and can reduce energy demand for air conditioning in Brazil, where unsaturated residual soil deposits are abundant. A three-dimensional numerical model for heat transfer and subsurface flow is first validated against field data from a thermal response test at the University of São Paulo. The model is then used to compare the performance of triple and quadruple U-tube piping geometries and helical piping geometries of equivalent length. The helical geometries resulted in initial less uniformly heated foundations and lower heat flux at the foundation boundary compared with the U-tubes, but the differences between the U-tube geometries and their equivalent length helices were less than 1°C. All piping geometries exhibited increased heat output as the length of heat exchanger piping increased. The infinite line source solution was compared with the model results. The infinite line source solution underestimated the thermal response of the system during the first 25-30 days and overestimated it afterwards.

2021 ◽  
Author(s):  
Arif Widiatmojo ◽  
Youhei Uchida ◽  
Isao Takashima

In recent decades, the fast-growing economies of Southeast Asian countries have increased the regional energy demand per capita. The statistic indicates Southeast Asian electricity consumption grows for almost 6% annually, with space cooling becoming the fastest-growing share of electricity use. The ground source heat pump technology could be one of the solutions to improve energy efficiency. However, currently, there are limited data on how a ground source heat pump could perform in such a climate. The thermal response test is widely used to evaluate the apparent thermal conductivity of the soil surrounding the ground heat exchanger. In common practice, the apparent thermal conductivity can be calculated from the test result using an analytical solution of the infinite line source method. The main limitation of this method is the negligence of the physical effect of convective heat transfer due to groundwater flow. While convection and dispersion of heat are two distinctive phenomena, failure to account for both effects separately could lead to an error, especially in high groundwater flow. This chapter discusses the numerical evaluation of thermal response test results in Bangkok, Thailand, and Hanoi, Vietnam. We applied a moving infinite line source analytical model to evaluate the value of thermal conductivity and groundwater flow velocity. While determining the ground thermal properties in a high accuracy is difficult, the moving infinite line source method fulfills the limitation of the infinite line source method. Further, we evaluated the five-year performance of the ground source heat pump system coupled with two vertical ground heat exchangers in Bangkok and Hanoi. The results suggest the importance of groundwater flow to enhance the thermal performance of the system.


2021 ◽  
Vol 13 (6) ◽  
pp. 3255
Author(s):  
Aizhao Zhou ◽  
Xianwen Huang ◽  
Wei Wang ◽  
Pengming Jiang ◽  
Xinwei Li

For reducing the initial GSHP investment, the heat transfer efficiency of the borehole heat exchange (BHE) system can be enhanced to reduce the number or depth of drilling. This paper proposes a novel and simple BHE design by changing the cross-sectional shape of the U-tube to increase the heat transfer efficiency of BHEs. Specifically, in this study, we (1) verified the reliability of the three-dimensional numerical model based on the thermal response test (TRT) and (2) compared the inlet and outlet temperatures of the different U-tubes at 48 h under the premise of constant leg distance and fluid area. Referent to the circular tube, the increases in the heat exchange efficiencies of the curved oval tube, flat oval tube, semicircle tube, and sector tube were 13.0%, 19.1%, 9.4%, and 14.8%, respectively. (3) The heat flux heterogeneity of the tubes on the inlet and outlet sides of the BHE, in decreasing order, is flat oval, semicircle, curved oval, sector, and circle shapes. (4) The temperature heterogeneity of the borehole wall in the BHE in decreasing order is circle, sector, curved oval, flat oval, and semicircle shapes. (5) Under the premise of maximum leg distance, referent to the heat resistance of the tube with a circle shape at 48 h, the heat exchange efficiency of the curved oval, flat oval, semicircle, and sector tubes increased 12.6%, 17.7%, 10.3%, and 7.8%, respectively. (6) We found that the adjustments of the leg distance and the tube shape affect the heat resistance by about 25% and 12%, respectively. (7) The flat-oval-shaped tube at the maximum leg distance was found to be the best tube design for BHEs.


2017 ◽  
Vol 830 ◽  
pp. 660-680 ◽  
Author(s):  
T. Kataoka ◽  
S. J. Ghaemsaidi ◽  
N. Holzenberger ◽  
T. Peacock ◽  
T. R. Akylas

The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified Boussinesq fluid of constant buoyancy frequency, $N$, is investigated. This variant of the widely studied horizontal configuration – where a cylinder aligned with a plane of constant gravitational potential induces four wave beams that emanate from the cylinder, forming a cross pattern known as the ‘St. Andrew’s Cross’ – brings out certain unique features of radiated internal waves from a line source tilted to the horizontal. Specifically, simple kinematic considerations reveal that for a cylinder inclined by a given angle $\unicode[STIX]{x1D719}$ to the horizontal, there is a cutoff frequency, $N\sin \unicode[STIX]{x1D719}$, below which there is no longer a radiated wave field. Furthermore, three-dimensional effects due to the finite length of the cylinder, which are minor in the horizontal configuration, become a significant factor and eventually dominate the wave field as the cutoff frequency is approached; these results are confirmed by supporting laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cutoff frequency as the group-velocity component perpendicular to the cylinder direction vanishes at cutoff; as a result, energy cannot be easily radiated away from the source, and nonlinear and viscous effects are likely to come into play. This scenario is examined by adapting the model for three-dimensional wave beams developed in Kataoka & Akylas (J. Fluid Mech., vol. 769, 2015, pp. 621–634) to the near-resonant wave field due to a tilted line source of large but finite length. According to this model, the combination of three-dimensional, nonlinear and viscous effects near cutoff triggers transfer of energy, through the action of Reynolds stresses, to a circulating horizontal mean flow. Experimental evidence of such an induced mean flow near cutoff is also presented.


Author(s):  
Lee Li Yong ◽  
Vivi Anggraini ◽  
Mavinakere Eshwaraiah Raghunandan ◽  
Mohd. Raihan Taha

ABSTRACT This study assessed the performance of residual soils with regard to their macrostructural and microstructural properties and compatibility with leachate in pursuit of exploring alternative cost-effective and efficient landfill liner materials. A series of laboratory investigations was conducted on three residual soil samples by using tap water and leachate as permeation fluid to achieve the objectives of the study. The zeta potential measurements revealed that the presence of multivalent cations in the leachate decreased the diffuse double layer (DDL) thickness around the soil particles. The reduced DDL thickness caused a decrease in Atterberg limits of soil-leachate samples and changes in the classification of fine fractions. Additionally, the effects of pore clogging attributed to chemical precipitation and bioclogging were responsible for the reduction in measured hydraulic conductivities of soil-leachate samples. These effects can be clearly observed from the field-emission scanning electron microscopy images of soil-leachate samples with the appearance of less visible voids that led to a more compact and dense structure. The formation of new non-clay minerals and associated changes in the Al and Si ratio as reflected in the x-ray diffraction diffractograms and energy-dispersive x-ray analyses, respectively, were attributed to the effects of chemical precipitation. This study concluded that S1 and S2 residual soil samples are potential landfill liner materials because they possess adequate grading characteristics, adequate unconfined compressive strength, low hydraulic conductivity, and good compatibility with leachate. In contrast, the S3 sample requires further treatment to enhance its properties in order to comply with the requirements of landfill liner materials.


Author(s):  
Xianwei Zhang ◽  
Xinyu Liu ◽  
Lingwei Kong ◽  
Gang Wang ◽  
Cheng Chen

Most previous studies have focused on the small strain stiffness of sedimentary soil while little attention has been given to residual soils with different properties. Most studies also neglected the effects of the deviator stress, which is extensively involved in civil engineering. This note considers the effects of the deviator stress on the small-strain stiffness of natural granite residual soil (GRS) as established from resonant column tests performed under various stress ratios. Although increasing the stress ratio results in a greater maximum shear modulus for both natural and remolded residual soils, remolded soil is more sensitive to changes in the stress ratio, which highlights the effects of soil cementation. The data herein offers new insights to understand the stiffness of residual soil and other weathered geomaterials.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Jia ◽  
Xuan Zhou ◽  
Wei Feng ◽  
Yuanda Cheng ◽  
Qi Tian ◽  
...  

The simultaneous need for energy efficiency and indoor comfort may not be met by existing air source heat pump (ASHP) technology. The novelty of this study lies in the use of a new gravity-driven radiator as the indoor heating terminal of ASHPs, aiming to provide an acceptable indoor comfort with improved energy efficiency. To confirm and quantify the performance improvement due to the proposed system retrofit, a field test was conducted to examine the system performance under real conditions. In the tests, measurements were made on the refrigerant- and air-side of the system to characterize its operational characteristics. Results showed that the proposed radiator has a rapid thermal response, which ensures a fast heat output from the system. The proposed system can create a stable and uniform indoor environment with a measured air diffusion performance index of 80%. The energy efficiency of the proposed system was also assessed based on the test data. It was found that the system’s first law efficiency is 42.5% higher than the hydraulic-based ASHP system. In terms of the second law efficiency, the compressor contributes the most to the overall system exergy loss. The exergy efficiency of the proposed system increases with the outdoor temperature and varies between 35.02 and 38.93% in the test period. The research results and the analysis methodology reported in this study will be useful for promoting the technology in search of energy efficiency improvement in residential and commercial buildings.


Sign in / Sign up

Export Citation Format

Share Document