scholarly journals Alternative pavement heating technique using renewable energy in North Dakota

2020 ◽  
Vol 205 ◽  
pp. 06014
Author(s):  
I-Hsuan Ho ◽  
Sheng Li ◽  
Li Ma

Hydronic heating pavement (HHP) is considered to be more sustainable and environmental-friendly for de-icing or pavement heating. The more efficient approach is to use deep direct-use geothermal energy due to the high temperature and clean. In western North Dakota, several aquifers have been identified to provide geothermal hot water ranging from 34°C to 140°C within 2300 m below the ground surface. The current technique has made it feasible to utilize the hot water for power generation. Besides drilling new wells, the higher temperature water exits from power plant still has up to 70ºC. This temperature enables the valuable applications to cascading use for other purposes such as space heating, snow-melting for transportation infrastructure etc. This paper mainly focuses on studying the challenges of an HHP using geothermal water. Parametric studies using finite element analysis were conducted. Considering the high heat demands in western North Dakota due to the extreme weather, the suitable water temperatures, pipes layouts, mechanical properties of piped pavement, volumetric flow rates and thermal conductivity of pavement were analysed. The optimization of the HHP subject to different weather conditions and new findings are summarized and discussed.

2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


Author(s):  
O̸sten Jensen ◽  
Anders Sunde Wroldsen ◽  
Pa˚l Furset Lader ◽  
Arne Fredheim ◽  
Mats Heide ◽  
...  

Aquaculture is the fastest growing food producing sector in the world. Considerable interest exists in developing open ocean aquaculture in response to a shortage of suitable, sheltered inshore locations. The harsh weather conditions experienced offshore lead to a focus on new structure concepts, remote monitoring and a higher degree of automation in order to keep the cost of structures and operations within an economically viable range. This paper proposes tensegrity structures in the design of flexible structures for offshore aquaculture. The finite element analysis program ABAQUS™ has been used to investigate stiffness properties and performance of tensegrity structures when subjected to various forced deformations and hydrodynamic load conditions. The suggested concept, the tensegrity beam, shows promising stiffness properties in tension, compression and bending, which are relevant for development of open ocean aquaculture construction for high energy environments. When designing a tensegrity beam, both pre-stress and spring stiffness should be considered to ensure the desired structural properties. A large strength to mass ratio and promising properties with respect to control of geometry, stiffness and vibration could make tensegrity an enabling technology for future developments.


2021 ◽  
Vol 10 (1) ◽  
pp. 187-200
Author(s):  
Xiaoyu Zhao ◽  
Guannan Wang ◽  
Qiang Chen ◽  
Libin Duan ◽  
Wenqiong Tu

Abstract A comprehensive study of the multiscale homogenized thermal conductivities and thermomechanical properties is conducted towards the filament groups of European Advanced Superconductors (EAS) strand via the recently proposed Multiphysics Locally Exact Homogenization Theory (LEHT). The filament groups have a distinctive two-level hierarchical microstructure with a repeating pattern perpendicular to the axial direction of Nb3Sn filament. The Nb3Sn filaments are processed in a very high temperature between 600 and 700°C, while its operation temperature is extremely low, −269°C. Meanwhile, Nb3Sn may experience high heat flux due to low resistivity of Nb3Sn in the normal state. The intrinsic hierarchical microstructure of Nb3Sn filament groups and Multiphysics loading conditions make LEHT an ideal candidate to conduct the homogenized thermal conductivities and thermomechanical analysis. First, a comparison with a finite element analysis is conducted to validate effectiveness of Multiphysics LEHT and good agreement is obtained for the homogenized thermal conductivities and mechanical and thermal expansion properties. Then, the Multiphysics LEHT is applied to systematically investigate the effects of volume fraction and temperature on homogenized thermal conductivities and thermomechanical properties of Nb3Sn filaments at the microscale and mesoscale. Those homogenized properties provide a full picture for researchers or engineers to understand the Nb3Sn homogenized properties and will further facilitate the material design and application.


1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


2000 ◽  
Author(s):  
Y. Cao ◽  
J. Ling ◽  
R. Rivir ◽  
C. MacArthur

Abstract Radially rotating heat pipes have been proposed for cooling gas turbine disks working at high temperatures. A disk incorporating the heat pipe would have an enhanced thermal dissipation capacity and a much lower temperature at the disk rim and dovetail surface. In this paper, extensive numerical simulations have been made for heat-pipe-cooled disks. Thermal performances are compared for the disks with and without incorporating the heat pipe at different heating and cooling conditions. The numerical results presented in this paper indicate that radially rotating heat pipes can significantly reduce the maximum and average temperatures at the disk rim and dovetail surface under a high heat flux working condition. In general, the maximum and average temperatures at the disk rim and dovetail surface could be reduced by above 250 and 150 degrees, respectively, compared to those of the disk without the heat pipe. As a result, a disk incorporating radially rotating heat pipes could alleviate temperature-related problems and allow a gas turbine to work at a much higher temperature.


Sign in / Sign up

Export Citation Format

Share Document