scholarly journals The development of an algorithm based on dynamic programming for optimization of tree-like energy pipeline system

2020 ◽  
Vol 219 ◽  
pp. 02005
Author(s):  
Valery Stennikov ◽  
Dmitry Sokolov ◽  
Evgeny Barakhtenko

The problem of optimizing the transmission capacity of a pipeline network is important for ensuring its operability. The problem arises at different stages of the network life cycle (design, optimization, development). The problem is to determine the diameters of the pipelines, the locations of the pumps and the heads on them, the locations of the regulators (flow and pressure) and their parameters. The article proposes a new algorithm based on dynamic programming, which implements an original approach to organizing a computational procedure. The general principles of the algorithm and the content of its steps do not depend on the purpose of the network and the composition of its equipment. The algorithm is versatile and allows one to optimize networks for various purposes. The proposed algorithm is implemented in the IRNET software. On its basis, calculations were made for the development of real district heating systems.

2021 ◽  
Vol 13 (20) ◽  
pp. 11256
Author(s):  
Camille Jeandaux ◽  
Jean-Baptiste Videau ◽  
Anne Prieur-Vernat

District heating systems are a way to integrate renewable energies into the heating sector, with the primary aim of decarbonizing this final use. In such systems, renewable energy sources are centrally managed with cutting-edge technological equipment, efficient maintenance rates and service guarantees. Both the decarbonization effect and the centralization lead to environmental benefits, which can go beyond the climate change indicator. In this study, life cycle assessment was used to assess the environmental sustainability of district heating solutions compared to standalones. The study aimed to examine a diverse set of options for large-scale district heating systems across Europe and to compare them to different standalone solutions. Eight technologies (five district-level and three standalone solutions) were analyzed in two densities of habitats and four areas of Europe. This study aimed to understand the drivers of district heating environmental performance and to provide guidelines for accounting said performance. The analysis showed better performance for district heating scenarios compared to isotechnology standalones for every environmental impact category: the climate change impact category were reduced from 5 to 90%, while respiratory inorganics were reduced from 45 to 64%, depending on the considered climatic area. This statement was true under key parameters, both technical and methodological—efficiencies and complement rates, but also the neutral carbon principle for biomass energy accounting and allocation rules.


Author(s):  
Ye.Ye. Nikitin

The current situation in the sphere of district heating is analysed on the basis of use of the cognitive approach. The presence of closed chains of cause-effect relationships of negative factors and conflicts of target settings of the subjects in the field of district heating is shown. The conceptual model of energy efficient modernization of district heating systems is proposed. This model includes indicators of the current status of heat sources, networks and heat consumers, energetic and economic models, restrictions, procedure of forming and analysis of the mutual influence of the recommended projects. The quantitative data on indicators of the current state of district heating systems of the cities of Ukraine are presented. The interrelation between indicators of the current state and projects of energy efficient modernization of district heating systems is shown. Assessment of energy self-sufficiency of municipal district heating systems on condition of thermal modernization of buildings is carried out. The creation of energy management systems at the district heating enterprises is proposed. Bib. 6, Fig. 7, Tab. 5.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


2021 ◽  
Vol 285 ◽  
pp. 116392
Author(s):  
Ruud Egging-Bratseth ◽  
Hanne Kauko ◽  
Brage Rugstad Knudsen ◽  
Sara Angell Bakke ◽  
Amina Ettayebi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3169
Author(s):  
Sara Månsson ◽  
Marcus Thern ◽  
Per-Olof Johansson Kallioniemi ◽  
Kerstin Sernhed

Faults in district heating (DH) customer installations cause high return temperatures, which have a negative impact on both current and future district heating systems. Thus, there is a need to detect and correct these faults soon after they occur to minimize their impact on the system. This paper, therefore, suggests a fault handling process for the detection and elimination of faults in DH customer installations. The fault handling process is based on customer data analysis since many faults manifest in customer data. The fault handling process was based on an analysis of the results from the previous fault handling studies, as well as conducting a workshop with experts from the DH industry. During the workshop, different organizational and technical challenges related to fault handling were discussed. The results include a presentation of how the utilities are currently working with fault handling. The results also present an analysis of different organizational aspects that would have to be improved to succeed in fault handling. The paper also includes a suggestion for how a fault handling process based on fault detection using data analysis may be designed. This process may be implemented by utilities in both current and future DH systems that interested in working more actively with faults in their customer installations.


Sign in / Sign up

Export Citation Format

Share Document