scholarly journals Evaluation of the air-dry mass of vetch-cereal grass mixtures according to their optimality in the ratio of neutral-detergent (NDF) and acid-detergent fiber (ADF)

2020 ◽  
Vol 224 ◽  
pp. 04030
Author(s):  
A S Skamarokhova ◽  
N. A. Yurina ◽  
N. A. Bedilo ◽  
D. A. Yurin ◽  
Y N Ashinov

On the experimental field an experiment was laid to study the productivity of two types of winter vetch: Hungarian vetch (Vicia pannonica Granz) varieties Orlan and Chernomorskaya and downy vetch (Vicia villosa op Roth) varieties Lugovskaya 2 and Glinkovskaya. The vetch was sown in a mixture with winter wheat (Triticum aestivum L.) variety Tanya. Various doses of mineral fertilizers. Phosphorus (superphosphate) and potassium (potassium chloride) were introduced during sowing, nitrogen (calcium nitrate) – as early spring feeding. As a control, we studied the variety of furry vetch Lugovskaya 2, since this is the most popular variety of winter vetch in the Krasnodar Territory. The soils of the experimental plots are represented by leached, low-humus heavy loamy powerful chernozem. Due to the limited feed intake, the diets of high-yielding cows are rich in highly digestible non-structural carbohydrates (ADF), which fermentation leads to the formation of a large amount of propionic acid in the rumen with a strong acidic effect and, conversely, NDF fermentation is slower and on a smaller scale. The variant winter wheat Tanya + winter vetch Lugovskaya 2 - is closer to the optimum in the second cut. The rest of the experimental options of vetchwheat and vetch-triticale grass mixtures also have a negative fiber balance, which is not acceptable for feeding high-producing dairy cattle.

1990 ◽  
Vol 68 (7) ◽  
pp. 1597-1601 ◽  
Author(s):  
John S. Taylor ◽  
Munjeet K. Bhalla ◽  
J. Mason Robertson ◽  
Lu J. Piening

During overwintering in a northern climate, winter wheat goes through a hardening process, followed by dehardening in late winter – early spring. This sequence of events may be partially controlled by changes in endogenous hormone levels. Crowns and leaf tissue from field grown winter wheat (Triticum aestivum L. cv. Norstar) seeded at the beginning of September were collected and freeze-dried at monthly intervals during the winters of 1985–1986 and 1986–1987. Material was also sampled and freeze-dried from seedlings grown in a growth chamber under hardening conditions (21 °C for 2 weeks plus 3 °C for 6 weeks) or nonhardening conditions (3 weeks at 21 °C). The tissues were analysed for cytokinins and abscisic acid. Cytokinin levels, measured with the soybean hypocotyl section assay, declined from October onwards and then rose to a peak in late winter (January and February, winter 1986–1987; February and March, winter 1985–1986), subsequently declining again. Abscisic acid, quantitated as the methyl ester by gas chromatography with an electron capture detector, increased in level from October to December, then decreased to a relatively low level between January and March. Hardened seedlings from the growth chamber contained significantly higher abscisic acid levels and significantly lower cytokinin levels than did the nonhardened seedlings. Key words: abscisic acid, cytokinins, hardening, Triticum aestivum, winter wheat.


1988 ◽  
Vol 68 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P. BULMAN ◽  
L. A. HUNT

Two field experiments were conducted to examine the relationships between tillering, spike number and grain yield in three winter wheat (Triticum aestivum L.) cultivars. Treatments were designed to manipulate both the production and survival of tillers, and to provide a high number of spikes per unit area. One experiment involved growth regulator treatments with cycocel and gibberellic acid while the second involved various rates of nitrogen. Grain yield was linearly related to total spike number over a range of 400–1200 spikes m−2 in a combined analysis over locations and years. When only spikes with at least nine fertile spikelets were included, a greater amount of the variability in yield could be explained, and differences among cultivars were related to the number of small, unproductive spikes. When locations and years were analyzed separately, little evidence was found for a diminishing response between grain yield and total spike number. Spike number was related to maximum tiller number in 1982, when winterkill and early spring conditions were unfavorable. Thus, although good fall tillering and winter survival contribute most to producing high spike numbers and grain yield, cultivars must also have the ability both to tiller rapidly in the spring and to sustain high-yielding tillers to provide sufficient compensation following winterkill.Key words: tillering, spikes, yield, wheat, nitrogen, regulators


1989 ◽  
Vol 69 (3) ◽  
pp. 881-888 ◽  
Author(s):  
D. A. DERKSEN ◽  
K. J. KIRKLAND ◽  
B. R. McLENNAN ◽  
J. H. HUNTER ◽  
H. A. LOEPPKY ◽  
...  

Recommendations regarding the timing of herbicide application in winter wheat vary among production areas. The current increase in area of winter wheat production in Saskatchewan warrants an examination of herbicide recommendations for this non-traditional production area. Field research was conducted for 2 yr at several locations in Saskatchewan using 2,4-D, MCPA, dicamba, bromoxynil, chlorsulfuron, and clopyralid, applied in the late fall or early spring, to determine the effects of time and rate of application on winter wheat grain yield. Winter wheat (Triticum aestivum L. ’Norstar’) was tolerant to fall application of all herbicides at rates recommended for spring application. Grain yield was reduced in some cases when double the recommended spring rate of 2,4-D, MCPA, bromoxynil, and clopyralid was applied in the fall. Spring application of clopyralid resulted in significantly lower grain yield than fall application. All herbicides tested show potential for use in winter wheat production, although caution is warranted for spring application of clopyralid.Key words: Wheat (winter), 2,4-D, MCPA, dicamba, bromoxynil, chlorsulfuron


2021 ◽  
Vol 22 (6) ◽  
pp. 2855
Author(s):  
Anna Janeczko ◽  
Jana Oklestkova ◽  
Danuše Tarkowská ◽  
Barbara Drygaś

Ecdysteroids (ECs) are steroid hormones originally found in the animal kingdom where they function as insect molting hormones. Interestingly, a relatively high number of these substances can also be formed in plant cells. Moreover, ECs have certain regulatory effects on plant physiology, but their role in plants still requires further study. One of the main aims of the present study was to verify a hypothesis that fenarimol, an inhibitor of the biosynthesis of ECs in the animal kingdom, also affects the content of endogenous ECs in plants using winter wheat Triticum aestivum L. as a model plant. The levels of endogenous ECs in winter wheat, including the estimation of their changes during a course of different temperature treatments, have been determined using a sensitive analytical method based on UHPLC-MS/MS. Under our experimental conditions, four substances of EC character were detected in the tissue of interest in amounts ranging from less than 1 to over 200 pg·g−1 FW: 20-hydroxyecdysone, polypodine B, turkesterone, and isovitexirone. Among them, turkesterone was observed to be the most abundant EC and accumulated mainly in the crowns and leaves of wheat. Importantly, the level of ECs was observed to be dependent on the age of the plants, as well as on growth conditions (especially temperature). Fenarimol, an inhibitor of a cytochrome P450 monooxygenase, was shown to significantly decrease the level of naturally occurring ECs in experimental plants, which may indicate its potential use in studies related to the biosynthesis and physiological function of these substances in plants.


Weed Research ◽  
1991 ◽  
Vol 31 (6) ◽  
pp. 409-415 ◽  
Author(s):  
B. R. MCLENNAN ◽  
R. ASHFORD ◽  
M. D. DEVINE

Sign in / Sign up

Export Citation Format

Share Document