scholarly journals The Study of Cryosurgical Micro-instrument on Biomedicine

2021 ◽  
Vol 233 ◽  
pp. 02005
Author(s):  
Tao Song ◽  
Baolin Liu ◽  
Linhan Jiao ◽  
Wanzhu Zhang

This paper introduces the development course of cryosurgery, mechanism, advantages and disadvantages, application scope, the analysis of the current world advanced the development of cryogenic surgical instruments and its principle and performance, found that at present, the development of the cryoablation equipment mainly for the treatment of diseases such as cancer such heavy research, thus ignore the crowd larger quantity of the treatment of skin disease research. cryopen are introduced in this paper to solve small pathological tissues such as skin disease treatment. we study a new type of freezing and melting equipment, named cryopen. at the same time, the simulation of treating abnormal skin is completed effectively. The results show that cryopen is very good for the treatment of abnormal skin. The future development of small cryoablation equipment is also put forward.

2018 ◽  
Vol 25 (6) ◽  
pp. 1059-1073 ◽  
Author(s):  
Weifeng Chen ◽  
Hu Weimin ◽  
Dejiang Li ◽  
Shaona Chen ◽  
Zhongxu Dai

AbstractGraphene (graphene) is a new type of two-dimensional inorganic nanomaterial developed in recent years. It can be used as an ideal inorganic nanofiller for the preparation of polymer nanocomposites because of its high mechanical strength, excellent electrical conductivity and plentiful availability (from graphite). In this review, the preparation methods of graphene/polymer nanocomposites, including solution blending, melt blending and in situ polymerization, are introduced in order to study the relationship between these methods and the final characteristics and properties. Each method has an influence on the final characteristics and properties of the nanocomposites. The advantages and disadvantages of these methods are discussed. In addition, a variety of nanocomposites with different properties, such as mechanical properties, electronic conductivity, thermal conductivity and thermal properties, are summarized comprehensively. The potential applications of these nanocomposites in conductive materials, electromagnetic shielding materials, photocatalytic materials and so on, are briefly presented. This review demonstrates that polymer/graphene nanocomposites exhibit superior comprehensive performance and will be applied in the fields of new materials and novel devices. Future research directions of the nanocomposites are also presented.


2019 ◽  
Vol 16 (3) ◽  
pp. 276-289
Author(s):  
N. V. Savenkov ◽  
V. V. Ponyakin ◽  
S. A. Chekulaev ◽  
V. V. Butenko

Introduction. At present, stands with running drums are widely used for various types of tests. Power stands play a special role. Such stands take the mechanical power from the driving wheels of the car. This simulates the process of movement of the vehicle under operating conditions. Such equipment has various designs, principles of operation and performance. It is also used in tests that are different by purpose, development stages and types: research, control, certification, etc. Therefore, it is necessary in order to determine the traction-speed, fuel-efficient and environmental performance characteristics.Materials and methods. The paper provides the overview of the power stands with running drums, which are widespread on the domestic market. The authors carried out the analysis of the main structural solutions: schemes of force transfer between the wheel and the drum; types of loading devices; transmission layout schemes and features of the control and measuring complex. The authors also considered corresponding advantages and disadvantages, recommended spheres of application, demonstrated parameters and characteristics of the units’ workflow, presented components and equipment.Discussion and conclusions. The authors critically evaluate existing models of stands with running drums. Such information is useful for choosing serial models of stands and for developing technical tasks for designing or upgrading the equipment.


2021 ◽  
Vol 2 (1) ◽  
pp. 46-62
Author(s):  
Santiago Iglesias-Baniela ◽  
Juan Vinagre-Ríos ◽  
José M. Pérez-Canosa

It is a well-known fact that the 1989 Exxon Valdez disaster caused the escort towing of laden tankers in many coastal areas of the world to become compulsory. In order to implement a new type of escort towing, specially designed to be employed in very adverse weather conditions, considerable changes in the hull form of escort tugs had to be made to improve their stability and performance. Since traditional winch and ropes technologies were only effective in calm waters, tugs had to be fitted with new devices. These improvements allowed the remodeled tugs to counterbalance the strong forces generated by the maneuvers in open waters. The aim of this paper is to perform a comprehensive literature review of the new high-performance automatic dynamic winches. Furthermore, a thorough analysis of the best available technologies regarding towline, essential to properly exploit the new winches, will be carried out. Through this review, the way in which the escort towing industry has faced this technological challenge is shown.


Author(s):  
Christine Ipsen ◽  
Marc van Veldhoven ◽  
Kathrin Kirchner ◽  
John Paulin Hansen

The number of people working from home (WFH) increased radically during the coronavirus (COVID-19) pandemic. The purpose of this study was therefore to investigate people’s experiences of WFH during the pandemic and to identify the main factors of advantages and disadvantages of WFH. Data from 29 European countries on the experiences of knowledge workers (N = 5748) WFH during the early stages of lockdown (11 March to 8 May 2020) were collected. A factor analysis showed the overall distribution of people’s experiences and how the advantages and disadvantages of WFH during the early weeks of the pandemic can be grouped into six key factors. The results indicated that most people had a more positive rather than negative experience of WFH during lockdown. Three factors represent the main advantages of WFH: (i) work–life balance, (ii) improved work efficiency and (iii) greater work control. The main disadvantages were (iv) home office constraints, (v) work uncertainties and (vi) inadequate tools. Comparing gender, number of children at home, age and managers versus employees in relation to these factors provided insights into the differential impact of WFH on people’s lives. The factors help organisations understand where action is most needed to safeguard both performance and well-being. As the data were collected amidst the COVID-19 pandemic, we recommend further studies to validate the six factors and investigate their importance for well-being and performance in knowledge work.


Author(s):  
E. V. Kudryavtseva ◽  
V. V. Kovalev ◽  
E. S. Zakurinova ◽  
G. Muller-Kamskii ◽  
V. V. Popov

Introduction. Despite the notable and rapid progress in the development of medical 3D printing in recent years, not much is known about the use of this technology in obstetrics and gynecology.The purpose of our review of scientific literature was to determine the current level of 3D printing development, discuss the closest and long term prospects for using this technology in obstetrics and gynecology, and analyze its potential advantages and disadvantages.Materials and methods. We searched for scientific literature. 378 papers passed a three-step screening, as a result of which 42 sources were selected for the final scientific review.Results and discussion. The main areas in which dimensional printing can be used in this area of medicine is the creation of simulation models and training for students, the creation of anatomical models for preoperative preparation, the surgical instruments, the creation of new dosage drug forms (including transvaginal ones), and bioprinting of organs and tissues.Conclusion. The presented literary review allows us to conclude that 3D printing the obstetrics and gynecology is a current rapidly developing direction. The organization of 3D modeling and printing laboratories can significantly increase the efficiency of teaching students and residents. In addition, obstetricians-gynecologists and surgeons should be informed about the possibility of 3D printing surgical instruments according to an individual design. It can inspire them to implement their own ideas and develop domestic innovative developments. Three-dimensional printing of dosage forms and bioprostheses requires more complex technological solutions, and is not yet used in clinical practice. However, given the enormous prospects for these areas, various grants should be envisaged for their development in Russia


Author(s):  
Javier Conejero ◽  
Sandra Corella ◽  
Rosa M Badia ◽  
Jesus Labarta

Task-based programming has proven to be a suitable model for high-performance computing (HPC) applications. Different implementations have been good demonstrators of this fact and have promoted the acceptance of task-based programming in the OpenMP standard. Furthermore, in recent years, Apache Spark has gained wide popularity in business and research environments as a programming model for addressing emerging big data problems. COMP Superscalar (COMPSs) is a task-based environment that tackles distributed computing (including Clouds) and is a good alternative for a task-based programming model for big data applications. This article describes why we consider that task-based programming models are a good approach for big data applications. The article includes a comparison of Spark and COMPSs in terms of architecture, programming model, and performance. It focuses on the differences that both frameworks have in structural terms, on their programmability interface, and in terms of their efficiency by means of three widely known benchmarking kernels: Wordcount, Kmeans, and Terasort. These kernels enable the evaluation of the more important functionalities of both programming models and analyze different work flows and conditions. The main results achieved from this comparison are (1) COMPSs is able to extract the inherent parallelism from the user code with minimal coding effort as opposed to Spark, which requires the existing algorithms to be adapted and rewritten by explicitly using their predefined functions, (2) it is an improvement in terms of performance when compared with Spark, and (3) COMPSs has shown to scale better than Spark in most cases. Finally, we discuss the advantages and disadvantages of both frameworks, highlighting the differences that make them unique, thereby helping to choose the right framework for each particular objective.


Sign in / Sign up

Export Citation Format

Share Document