scholarly journals Factors influencing electrochemically enhanced sacrificial anode phosphate recovery

2021 ◽  
Vol 237 ◽  
pp. 01005
Author(s):  
Xiaoyan Zhou ◽  
Gang Zhang ◽  
Haijian Shi

The recovery of phosphate from wastewater has been attracting increasing attention. In this study, the technology of an electrochemically enhanced sacrificial anode was applied to investigate the phosphate recovery process from sewage. The experimental results indicated that, when residence times ranged from 20 to 120 s, and phosphate removal efficiencies ranged from 24.65% to 95.27%. When the current density ranged from 10 to 70 A/m2, the phosphate removal efficiencies ranged from 56.73% to 95.17%. When the plate spacing ranged from 1 to 5 cm, the phosphate removal efficiencies ranged from 83.48% to 9.48%. The experimental results confirm the conclusions of this study about controlling operational factors in practical applications to increase phosphate removal efficiencies.

2015 ◽  
Vol 2015 (14) ◽  
pp. 4117-4129
Author(s):  
Betty H Olson ◽  
Tongzhou Wang ◽  
Pitiporn Asvapathanagul ◽  
Diego Rosso ◽  
Phillip B Gedalanga ◽  
...  

Author(s):  
E. de Langre ◽  
J. L. Riverin ◽  
M. J. Pettigrew

The time dependent forces resulting from a two-phase air-water mixture flowing in an elbow and a tee are measured. Their magnitudes as well as their spectral contents are analyzed. Comparison is made with previous experimental results on similar systems. For practical applications a dimensionless form is proposed to relate the characteristics of these forces to the parameters defining the flow and the geometry of the piping.


2020 ◽  
Author(s):  
◽  
Shiying Li

Although Zernike and pseudo-Zernike moments have some advanced properties, the computation process is generally very time-consuming, which has limited their practical applications. To improve the computational efficiency of Zernike and pseudo-Zernike moments, in this research, we have explored the use of GPU to accelerate moments computation, and proposed a GPUaccelerated algorithm. The newly developed algorithm is implemented in Python and CUDA C++ with optimizations based on symmetric properties and k × k sub-region scheme. The experimental results are encouraging and have shown that our GPU-accelerated algorithm is able to compute Zernike moments up to order 700 for an image sized at 512 × 512 in 1.7 seconds and compute pseudo-Zernike moments in 3.1 seconds. We have also verified the accuracy of our GPU algorithm by performing image reconstructions from the higher orders of Zernike and pseudo-Zernike moments. For an image sized at 512 × 512, with the maximum order of 700 and k = 11, the PSNR (Peak Signal to Noise Ratio) values of its reconstructed versions from Zernike and pseudo-Zernike moments are 44.52 and 46.29 separately. We have performed image reconstructions from partial sets of Zernike and pseudo-Zernike moments with various order n and different repetition m. Experimental results of both Zernike and pseudo-Zernike moments show that the images reconstructed from the moments of lower and higher orders preserve the principle contents and details of the original image respectively, while moments of positive and negative m result in identical images. Lastly, we have proposed a set of feature vectors based on pseudo-Zernike moments for Chinese character recognition. Three different feature vectors are composed of different parts of four selected lower pseudo-Zernike moments. Experiments on a set of 6,762 Chinese characters show that this method performs well to recognize similar-shaped Chinese characters.


2021 ◽  
Author(s):  
Shaoxia Zhang ◽  
Deyu Li ◽  
Yanhui Zhai

Abstract Decision implication is an elementary representation of decision knowledge in formal concept analysis. Decision implication canonical basis (DICB), a set of decision implications with completeness and nonredundancy, is the most compact representation of decision implications. The method based on true premises (MBTP) for DICB generation is the most efficient one at present. In practical applications, however, data is always changing dynamically, and MBTP has to re-generate inefficiently the whole DICB. This paper proposes an incremental algorithm for DICB generation, which obtains a new DICB just by modifying and updating the existing one. Experimental results verify that when the samples in data are much more than condition attributes, which is actually a general case in practical applications, the incremental algorithm is significantly superior to MBTP. Furthermore, we conclude that, even for the data in which samples is less than condition attributes, when new samples are continually added into data, the incremental algorithm must be also more efficient than MBTP, because the incremental algorithm just needs to modify the existing DICB, which is only a part of work of MBTP.


2013 ◽  
Vol 465-466 ◽  
pp. 1026-1033 ◽  
Author(s):  
Tajul Ariffin Abdullah ◽  
Akmal Hashim ◽  
Abu Bakar Baharudin ◽  
Dzuraidah Abd Wahab

Over this recent year, a growing population that increase the economic development, capacity of landfills and critical environmental impact are gaining the importance role of remanufacturing activities. Moreover, many durable products are disposed in landfills at the end of their useful lives without undergoing by any recovery process that affect the landfill space has been decreasing in all over the world including by our country. Remanufacturing is the process by which used products are returned to their new state with minimum waste and expenditure on materials and energy. This study focus on the concept concept of remanufacturing practice in automotive sector. Malaysians have been generated wastes at a manufacturing sector especially in the automotive sector. On top of that, the conventional remanufacturing systems that have been constructed in Malaysia are not widely marketed and lack of practical applications. This study provides a remanufacturing analysis for improvement to the automotive sectors on engine block. Furthermore, this study presents the information based on the discussion of Failure Mode and Effects Analysis (FMEA) to encourage the implementation of remanufacturing activities. By making the remanufacturing activities possible to implement efficiently, manufacturer may decrease their production costs, decrease refuse and landfill materials, and increase their quality management.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhu Hongbiao ◽  
Yueming Liu ◽  
Weidong Wang ◽  
Zhijiang Du

Purpose This paper aims to present a new method to analyze the robot’s obstacle negotiation based on the terramechanics, where the terrain physical parameters, the sinkage and the slippage of the robot are taken into account, to enhance the robot’s trafficability. Design/methodology/approach In this paper, terramechanics is used in motion planning for all-terrain obstacle negotiation. First, wheel/track-terrain interaction models are established and used to analyze traction performances in different locomotion modes of the reconfigurable robot. Next, several key steps of obstacle-climbing are reanalyzed and the sinkage, the slippage and the drawbar pull are obtained by the models in these steps. In addition, an obstacle negotiation analysis method on loose soil is proposed. Finally, experiments in different locomotion modes are conducted and the results demonstrate that the model is more suitable for practical applications than the center of gravity (CoG) kinematic model. Findings Using the traction performance experimental platform, the relationships between the drawbar pull and the slippage in different locomotion modes are obtained, and then the traction performances are obtained. The experimental results show that the relationships obtained by the models are in good agreement with the measured. The obstacle-climbing experiments are carried out to confirm the availability of the method, and the experimental results demonstrate that the model is more suitable for practical applications than the CoG kinematic model. Originality/value Comparing with the results without considering Terramechanics, obstacle-negotiation analysis based on the proposed track-terrain interaction model considering Terramechanics is much more accurate than without considering Terramechanics.


Author(s):  
Semen Kopylov ◽  
Zhaobo Chen ◽  
Mohamed AA Abdelkareem

Implementation of tuned mass dampers is the commonly used approach to avoid excessive vibrations in civil engineering. However, due to the absence of the compact dimension, there are still no practical applications of the tuned mass dampers in automotive industry. Meanwhile, recent investigations showed the benefit of utilizing a tuned mass damper in a vehicle suspension in terms of driving comfort and road holding. Thus, the current investigation aimed to explore a novel compact dimension tuned mass damper, which can provide both sufficient vibration mitigation and energy harvesting. This paper presents a prototype of a back-iron-based design of an electromagnetic regenerative tuned mass damper. The mathematical model of the tuned mass damper system was developed and has been validated by the experimental results of the tuned mass damper prototype implemented in a protected mass test-bench. The indicated results concluded that the attenuation performance dramatically deteriorated under random excitations and a reduction in the root-mean-square acceleration of 18% is concluded compared to the case with undamped tuned mass damper. Under harmonic excitations, the designed tuned mass damper prototype is able to reduce the peak acceleration value of the protected structure by 79%. According to the experimental results, the designed tuned mass damper prototype revealed a peak regenerative power of 0.76 W under a harmonic excitation of 8.1 Hz frequency [Formula: see text]m amplitude. Given the simulated random road profiles from C to E, the back-iron electromagnetic tuned mass damper indicated that root-mean-square harvested power from 0.6 to 6.4 W, respectively.


Author(s):  
P. N. Botsaris ◽  
D. Bechrakis ◽  
P. D. Sparis

The intelligent control as fuzzy or artificial is based on either expert knowledge or experimental data and therefore it possesses intrinsic qualities like robustness and ease implementation. Lately, many researchers present studies aim to show that this kind of control can be used in practical applications such as the idle speed control problem in automotive industry. In this study, an estimation of an automobile three-way catalyst performance with artificial neural networks is presented. It may be an alternative approach for an on board diagnostic system (OBD) to predict the catalyst performance. This method was tested using data sets from two kind of catalysts, a brand new and an old one on a laboratory bench at idle speed. The catalyst operation during the “steady state” phase (the phase that the catalyst has reached its operating conditions and works normally) is examined. Further experiments are needed for different catalyst typed before the methods is proposed generally. It consists of 855 elements of catalyst inlet-outlet temperature difference (DT), hydrocarbons (HC), and carbon monoxide (CO) and carbon dioxide (CO2) emissions. The simulation: detects the values of HC, CO, CO2 using the DT as an input to our network forms a neural network. Results showed serious indications that artificial neural networks (or fuzzy logic control laws) could estimate the catalyst performance adequately depending their training process, if certain information about the catalyst system and the inputs and output of such system are known. In this study the “steady state” period experimental results are presented. In this paper the “steady state” period experimental results are presented.


Author(s):  
Tahreer Mahmood ◽  
Seshadri Mohan

Multiple-input multiple-output technology together with orthogonal frequency division multiplexing (MIMO-OFDM) is an effective technique to combat multi-channel fading and to improve bandwidth efficiency. Simultaneously, it also increases the system's ability to provide reliable transmission. However, the main disadvantage of OFDM is the high peak-to-average-power ratio (PAPR), which, if not mitigated, will negatively impact practical applications. The high PAPR increases complexity and Bit Error Rate. In this research, the authors investigate the factors influencing the PAPR performance of both OFDM and MIMO-OFDM systems. The objective of this research is to make researchers in this field become familiar with this problem as well as to impart an understanding of the factors that influence PAPR. In this study, the authors classify the factors that impact PAPR into modulation schemes and a number of sub-carriers. These parameters influence the PAPR performance have been analyzed and simulated by using MATLAB. It is observed that the numbers of sub-carriers have a great effect on the PAPR performance. However, modulation schemes can have a small effect on PAPR performance.


Sign in / Sign up

Export Citation Format

Share Document