scholarly journals Fluorination of Carbon Molecular Sieve as Cathode Material for Lithium Primary Batteries and its Characteristics

2021 ◽  
Vol 245 ◽  
pp. 01009
Author(s):  
Shengbo Jiang ◽  
Ping Huang ◽  
Jiachun Lu ◽  
Zhichao Liu

Fluorinated carbon (CFx) is a new material with good lubricity and resistance to high temperature and corrosion. Meanwhile, CFx has excellent electrochemical properties when used as the cathode of the lithium primary batteries. Here, a series of carbon molecular sieve (CMS) is fluorinated via gas-phase fluorination. The CMS treated at 1550 °C has better electrochemical properties after fluorination. The fluorinated products named CMSF deliver specific capacity reaching 796 mAh g-1, associated with discharge potentials exceeding 3.1 V (vs. Li/Li+). The discharge voltage of CMSF is about 0.4 V ~ 0.6 V higher than that of fluorinated graphite (GF), and its energy density is about 8% ~ 13% higher than that of GF. The CMSF with the better electrochemical performances than GF as well as its low cost and scalable product demonstrated its great potential practicability in the field of lithium primary batteries.

2018 ◽  
Vol 194 ◽  
pp. 443-450 ◽  
Author(s):  
Seong-Joong Kim ◽  
Pyung Soo Lee ◽  
Jong-San Chang ◽  
Seung-Eun Nam ◽  
You-In Park

2010 ◽  
Vol 105-106 ◽  
pp. 664-667
Author(s):  
Sheng Wen Zhong ◽  
Wei Hu ◽  
Qian Zhang

The precursor of Mn0.75Ni0.25CO3 is prepared by carbonate co-precipitation method. And the cathode material 0.5Li2MnO3•0.5LiMn0.5Ni0.5O2 is synthesized with two stages calcining temperatures T1 and T2. T1 represents 400°C, 500°C, 600°C and T2 is selected at 750°C, 850°C, 950°C respectively. XRD Patterns shows that the cathode material has the integrated structures of Li2MnO3 and LiMO2, and it has better crystallization during the rise of calcined temperature at 950°C. The electrochemical performances tests indicates that the initial discharge specific capacity are greater than 220mAh/g at the current density 0.2 mA/cm2 in 2.5-4.6V at room temperature. When cathode material is calcined at 750°C, its discharge specific capacity even reach to 248mAh/g, but the cathode material has more perfect general electrochemical properties during calcined temperature at 950°C.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 747 ◽  
Author(s):  
Ai-Lan Yan ◽  
Xin-Chang Wang ◽  
Ji-Peng Cheng

The research on supercapacitors has been attractive due to their large power density, fast charge/discharge speed and long lifespan. The electrode materials for supercapacitors are thus intensively investigated to improve the electrochemical performances. Various transition metal layered double hydroxides (LDHs) with a hydrotalcite-like structure have been developed to be promising electrode materials. Earth-abundant metal hydroxides are very suitable electrode materials due to the low cost and high specific capacity. This is a review paper on NiMn LDHs for supercapacitor application. We focus particularly on the recent published papers using NiMn LDHs as electrode materials for supercapacitors. The preparation methods for NiMn LDHs are introduced first. Then, the structural design and chemical modification of NiMn LDH materials, as well as the composites and films derived from NiMn LDHs are discussed. These approaches are proven to be effective to enhance the performance of supercapacitor. Finally, the reports related to NiMn LDH-based asymmetric supercapacitors are summarized. A brief discussion of the future development of NiMn LDHs is also provided.


Author(s):  
Shimeng Zhao ◽  
Jialin Li ◽  
Haixia Chen ◽  
Jianxin Zhang

Abstract Rechargeable aluminum ion batteries (AIBs) have attracted much attention because of their high charge density, low cost, and low flammability. Transition metal sulfides are a class of cathode materials that have been extensively studied. In this report, Bi2S3 nanorods and Bi2S3/MoS2 nanorods were synthesized by the hydrothermal method as new type of cathode materials for rechargeable AIBs. The diameter of Bi2S3/MoS2 nanorods is 20–100 nm. The Bi2S3 nanorods display high initial charge and discharge capacities of 343.3 and 251 mA h/g with a current density of 1 A/g. The static cycling for the Bi2S3/MoS2 nanorods electrode at 1 A/g denotes high stability with a specific capacity of 132.9 mA h/g after 100 cycles. The charging voltage platform of Bi2S3 nanorods and Bi2S3/MoS2 nanorods is at 1.1–1.4 V, and the discharge voltage platform is at around 0.8 V. The well-defined heterojunction maintains the stability of the Bi2S3 structure during long-term cycling, which is desirable for aluminum ion batteries. This strategy reveals new insights for designing cathode materials of high-performance AIBs.


2013 ◽  
Vol 743-744 ◽  
pp. 35-43
Author(s):  
Shi Ming Zhang ◽  
Jun Xi Zhang ◽  
Bo Cheng He ◽  
Suo Jiong Xu ◽  
Xu Ji Yuan

nanosized FePO4 and Fe1-xCexPO4 (x=0.02, 0.04, 0.08) cathode materials were synthesized by microemulsion method. The samples were prepared via a microemulsion system in a H2O/cyclohexane/Triton x-100/n-butyl alcohol at different temperatures (30 , 45 , 50 , 60 ) and then sintered at 380 and 460 for 3 h. The thermal stability, structure and morphology were investigated by means of TG/DCS, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and the electrochemical properties were characterized by cyclic voltammetry (CV) and galvanostatic charge and discharge tests. Results show that synthesis temperature has a great influence on the performances of FePO4, and the sample synthesized at 45 shows the best performances with a diameter of about 20 nm and a high discharge initial specific capacity of 142mAh/g and retaining 123mAh/g after 20 cycles at 0.1 C. The Ce-doped FePO4, Fe1-xCexPO4 (x=0.02, 0.04, 0.08), can effectively improve the electrochemical properties of FePO4 cathode materials. The Fe0.96Ce0.04PO4 exhibits an initial discharge capacity of 158.2mAh/g and retains 152mAh/g after 20 cycles at 0.1 C. Hence, Fe0.96Ce0.04PO4 is a promising candidate for cathode materials of lithium ion batteries.


Chem ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 631-645 ◽  
Author(s):  
Zhenzhen Yang ◽  
Wei Guo ◽  
Shannon Mark Mahurin ◽  
Song Wang ◽  
Hao Chen ◽  
...  

NANO ◽  
2019 ◽  
Vol 14 (08) ◽  
pp. 1950103
Author(s):  
Wen-Zhe Shen ◽  
Yi Ma ◽  
Yao-Chun Yao ◽  
Feng Liang

Ni-rich Li(Ni[Formula: see text]Co[Formula: see text]Mn[Formula: see text]O2 cathode material is widely recognized as one of the most cathode materials for lithium-ion batteries due to its high specific capacity, high energy density and low cost. In this paper, the NCM cathode material precursor Ni[Formula: see text]Co[Formula: see text]Mn[Formula: see text](OH)2 was prepared by coprecipitation method and the optimum experimental conditions were investigated. The effects of water bath temperature on the electrochemical performances of the prepared materials were investigated by controlling the morphology. The results showed that 60∘C was the best bath temperature for the precursor which has a regular spheroidal morphology and uniform particles with the diameter of 10[Formula: see text][Formula: see text]m. After coprecipitation, the samples calcined under oxygen atmosphere displayed good electrochemical properties. The discharge specific capacity is up to 194[Formula: see text]mA[Formula: see text][Formula: see text][Formula: see text]h[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] and 134[Formula: see text]mA[Formula: see text][Formula: see text][Formula: see text]h[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] at 0.2∘C and 5∘C, respectively. The initial coulombic efficiency is 87.57% at 0.2∘C.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Bin Zhang ◽  
Chuanfu Yu ◽  
Zijiong Li

Abstract Perovskite oxides, as a kind of functional materials, have been widely studied in recent years due to its unique physical, chemical, and electrical properties. Here, we successfully prepared perovskite-type LaCoO3 (LCOs) nanomaterials via an improved sol-gel method followed by calcination, and investigated the influence of calcination temperature and time on the morphology, structure, and electrochemical properties of LaCoO3 nanomaterials. Then, based on the optimal electrochemical performance of LCO-700-4 electrode sample, the newly synthesized nanocomposites of Sr-doping (LSCO-0.2) and rGO-compounding (rGO@LCO) through rational design exhibited a 1.45-fold and 2.03-fold enhancement in its specific capacitance (specific capacity). The rGO@LCO electrode with better electrochemical performances was further explored by assembling rGO@LCO//rGO asymmetric supercapacitor system (ASS) with aqueous electrolyte. The result showed that the ASS delivers a high energy density of 17.62 W h kg−1 and an excellent cyclic stability with 94.48% of initial capacitance after 10,000 cycles, which are good electrochemical performances among aqueous electrolytes for green and new efficient energy storage devices.


Author(s):  
V. N. Kitenge ◽  
K. O. Oyedotun ◽  
O. Fasakin ◽  
D. J. Tarimo ◽  
N. F. Sylla ◽  
...  

AbstractThis study has investigated the effect of the incorporation of graphene foam (GF) into the matrix of a ternary transition-metals hydroxide containing nickel, cobalt, and manganese for optimal electrochemical performances as electrodes for supercapacitors applications. An adopted simple, low-cost co-precipitation synthesis method involved the loading a mass of the ternary metal hydroxides (NiCoMn-TH) onto various GF mass loading so as to find ints effect on the electrochemical properties of the hydroxides. Microstructural and chemical composition of the various composite materials were investigated by employing scanning/transmission electron microscopy (SEM/TEM), x-ray diffraction (XRD), Raman spectroscopy, and N2 physisorption analysis among others. Electrochemical performances of the NiCoMn-TH/200 mg GF composite material evaluated in a three-electrode system using 1 M KOH solution revealed a maximum specific capacity around 178.6 mAh g−1 compared to 76.2 mAh g−1 recorded for the NiCoMn-TH pristine material at a specific current of 1 A g−1. The best mass loading of GF nanomaterial (200 mg GF), was then utilised as a positive electrode material for the design of a novel hybrid device. An assembled hybrid NiCoMn-TH/200 mg GF//CSDAC device utilizing the NiCoMn-TH/200 mg GF and activated carbon derived from the cocoa shell (CSDAC) as a positive and negative electrode, respectively, demonstrated a sustaining specific capacity of 23.4 mAh g−1 at a specific current of 0.5 A g−1. The device also yielded sustaining a specific energy and power of about 22.32 Wh kg−1 and 439.7 W kg−1, respectively. After a cycling test of over 15,000 cycles, the device could prove a coulombic efficiency of ~ 99.9% and a capacity retention of around 80% within a potential range of 0.0–1.6 V at a specific current of 3 A g−1. These results have demonstrated the prodigious electrochemical potentials of the as-synthesized material and its capability to be utilized as an electrode for supercapacitor applications.


Sign in / Sign up

Export Citation Format

Share Document