scholarly journals Research on improving development effect of high-saturated reservoir in the late stage of water-flooding

2021 ◽  
Vol 271 ◽  
pp. 01016
Author(s):  
Xiaoying Shi ◽  
Huajiao Guan ◽  
Hui Zhao ◽  
Yali Jiang ◽  
Yuying Li ◽  
...  

High-saturated reservoir is characterized by high saturation pressure and high gas-oil ratio. The effects of water flooding are easily influenced by the formation pressure and GOR, especially at the late stage. This article presents the relationship between the reasonable pressure maintenance level and GOR as well as water cut based on the actual characteristics of high-saturated reservoir. Then, the reservoir numerical simulation method is used to analyse the influence of pressure recovery rate and water cut rise under different injection-production ratios and injection-production methods. Research results show that the pressure maintenance level of high-saturated reservoir is larger than normal reservoirs. Bigger injection-production ratio results in not only faster pressure recovery rate but also higher water cut. Cyclic injection and production method under the maximum injection rate and liquid extraction amount can enhance oil recovery rate and control water cut rise at the same time, which plays a significant role in improving the development effect of water-flooding in high-saturated reservoirs at the late stage.

2018 ◽  
Vol 26 (4) ◽  
pp. 217-221
Author(s):  
Tanyana Nikolaevna Ivanova ◽  
Aleksandr Ivanovich Korshunov ◽  
Vladimir Pavlovich Koretckiy

Abstract Cost-efficient, enabling technologies for keeping and increasing the reservoir recovery rate of oil-formations with high water cut of produced fluids and exhausted resource are really essential. One of the easiest but short-term ways to increase oil production and incomes at development of oil deposits is cost of development and capital cost reduction. Therefore, optimal choice and proper feasibility study on the facilities for multilayer oil fields development, especially at the late stage of reservoir working, is a crucial issue for now-day oil industry. Currently, the main oil pools do not reach the design point of coefficient of oil recovery. The basic feature of the late stage of reservoir working is the progressing man-made impact on productive reservoir because of water injection increasing for maintaining reservoir pressure. Hence cost-efficient, enabling technologies for keeping and increasing the reservoir recovery rate of oil-formations with high water cut of produced fluids and exhausted resource are really essential. To address the above concerns the dual completion petroleum production engineering was proposed. The intensity of dual completion of formation with of different permeability is determined by rational choice of each of them. The neglect of this principle results a disproportionately rate of highly permeable formations development for the time. In effect the permeability of the formations or their flow rate is decreasing. The problem is aggravated by lack of awareness of mechanics of layers' mutual interference in producers and injectors. Dual completion experience in Russian has shown, that success and efficiency of the technology in many respects depend on engineering support. One of the sufficient criteria for the choice of operational objects should be maximal involvement of oil-saturated layers by oil displacement from seams over the economic life of well producing oil. If it is about getting high rate of oil recovery for irregular formations there is no alternative to dual completion and production. The recommended dual completion petroleum production technology enables development several formations by single well at the time. The dual completion petroleum production technology has been more important than ever because it is right not only for formations but for thin layers with undeveloped remaining reserves.


2021 ◽  
Vol 329 ◽  
pp. 01065
Author(s):  
Cong Nie

This paper, by conducting comprehensive analysis on water-flooding reservoir, intensively studied and discussed the characteristics of geological development, determined the evaluation indexes of development effect, carried out research from five steps, the first is the introduction part, it conducted indepth study and discussion from research background, research significance, literature review, and research methods four aspects. The second outlined the related theory from the optimization principle and mechanism of injection-production parameters, and the distribution mechanism of remaining oil two aspects. The third analyzed the current situation of reasonable injection-production of water-flooding reservoirs in Daqing Oilfield from reservoir characteristics and reservoir deposition. The fourth evaluated the water-flooding development effect from combined water cut, changing conditions of production and predicted recovery ratio. The fifth intensively studied the reasonable injection-production parameters of water- flooding reservoirs in Daqing oilfield from design of separated layer water injection plan, maintaining level reservoir formation pressure, and reasonable plan of injection-production ratio and oil recovery rate three aspects, and provides theoretical guidance for later targeted excavation of water-flooding reservoirs.


2018 ◽  
Vol 38 ◽  
pp. 01042
Author(s):  
Zhang Angang ◽  
Fan Zifei ◽  
Zhao Lun ◽  
Wang Jincai ◽  
Zhang Xiangzhong ◽  
...  

The central layer Yu-III in Akshabulak oilfield is a sandstone reservoir with strong edge water, whose major development characteristics are high oil recovery rate and heterogeneous water invasion. Aiming at this problem, the development policy chart of concurrent displacement of natural water and injected water is established on the basis of material balance principle. Injection-production ratio and oil recovery rate are the main controlling factors for the concurrent displacement of natural water and injected water. Each injection-production ratio corresponds with only one rational oil recovery rate, and the rational oil recovery rate increases with the injection-production ratio. When the actual injection-production ratio of the central Yu-III reservoir is 0.9, the rational oil recovery rate should be 4%.


2021 ◽  
Author(s):  
Effiong Essien ◽  
Uchenna Onyejiaka ◽  
Stanley Onwukwe ◽  
Nnaemeka Uwaezuoke

Abstract Poor formation permeability and near well bore damage may limit water injectivity into the reservoir in a water injection project. This paper seeks to evaluate the effect of radial drilling technique on water injectivity and oil recovery in water flooding operation. Radial drilling technology utilizes hydraulic energy to create lateral perpendicular small holes through the casing into the reservoir. The holes may extend to 100 m (330 ft) into the reservoir to access fresh formations beyond the near wellbore, and damage zone. A black oil simulator (Eclipse 100) was used to modeling a lateral radial drill from the borehole into the reservoir, and that of a conventional perforation of the wellbore respectively. A simulation study was carried out using various presumed radial drill configurations in determining injectivity index, displacement efficiencies, recovery factor and water cut of the process. The determined results were further compared with that of the conventional perforation process case respectively. The results show a significant improvement in water injectivity in radial drill case with the increasing length and number of radials as compared to the conventional wellbore perforation case. The determined Recovery factor shows a progressive increase with increase in the numbers of radials drilled, irrespective of the radial length. However, it was observed that, the more the number and length of the radials drilled in to the reservoir, the higher the water cut from producer wells. Radial Drilling Technology, therefore, has a promising potential to improving water injectivity into the reservoir and thereby optimizing oil recovery in a water flooding operation.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 446 ◽  
Author(s):  
Lei Zhang ◽  
Nasir Khan ◽  
Chunsheng Pu

Due to the strong heterogeneity between the fracture and the matrix in fractured oil reservoirs, injected water is mainly moved forward along the fracture, which results in poor water flooding. Therefore, it is necessary to reduce the water cut and increase oil production by using the conformance control technology. So far, gel particles and partially hydrolyzed polyacrylamide (HPAM)/Cr3+ gel are the most common applications due to their better suitability and low price. However, either of the two alone can only reduce the conductivity of the fracture to a certain extent, which leads to a poor effect. Therefore, to efficiently plug the fracture to enhance oil recovery, a combination of gel particles and the HPAM/Cr3+ system is used by laboratory tests according to their respective advantages. The first step is that the gel particles can compactly and uniformly cover the entire fracture and then the fracture channel is transformed into the gel particles media. This process can enhance the oil recovery to 18.5%. The second step is that a suitable HPAM/Cr3+ system based on the permeability of the gel particles media is injected in the fractured core. Thus, the fracture can be completely plugged and the oil in the matrix of the fractured core can be displaced by water flooding. This process can enhance oil recovery to 10.5%. During the whole process, the oil recovery is increased to 29% by this method. The results show that this principle can provide a new method for the sustainable and efficient development of fractured oil reservoirs.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Yongfei Yang ◽  
Haiyuan Yang ◽  
Liu Tao ◽  
Jun Yao ◽  
Wendong Wang ◽  
...  

To investigate the characteristics of oil distribution in porous media systems during a high water cut stage, sandstones with different permeability scales of 53.63 × 10−3 μm2 and 108.11 × 10−3 μm2 were imaged under a resolution of 4.12 μm during a water flooding process using X-ray tomography. Based on the cluster-size distribution of oil segmented from the tomography images and through classification using the shape factor and Euler number, the transformation of the oil distribution pattern in different injection stages was studied for samples with different pore structures. In general, the distribution patterns of an oil cluster continuously change during water injection. Large connected oil clusters break off into smaller segments. The sandstone with a higher permeability (108.11 × 10−3 μm2) shows the larger change in distribution pattern, and the remaining oil is trapped in the pores with a radius of approximately 7–12 μm. Meanwhile, some disconnected clusters merge together and lead to a re-connection during the high water cut period. However, the pore structure becomes compact and complex, the residual nonwetting phase becomes static and is difficult to move; and thus, all distribution patterns coexist during the entire displacement process and mainly distribute in pores with a radius of 8–12 μm. For the pore-scale entrapment characteristics of the oil phase during a high water cut period, different enhance oil recovery (EOR) methods should be considered in sandstones correspondent to each permeability scale.


2015 ◽  
Vol 42 (3) ◽  
pp. 384-389 ◽  
Author(s):  
Lun ZHAO ◽  
Xi CHEN ◽  
Li CHEN ◽  
Renyi CAO ◽  
Xiangzhong ZHANG ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 562 ◽  
Author(s):  
Shuang Liang ◽  
Yikun Liu ◽  
Shaoquan Hu ◽  
Anqi Shen ◽  
Qiannan Yu ◽  
...  

With the rapid growth of energy consumption, enhanced oil recovery (EOR) methods are continually emerging, the most effective and widely used was polymer flooding. However, the shortcomings were gradually exposed. A novel decorated polyacrylamide might be a better alternative than polymer. In this work, the molecular structure and the properties reflecting the viscosity of decorated polyacrylamide, interfacial tension, and emulsification were examined. In order to better understand the interactions between decorated polyacrylamide and oil as well as the displacement mechanism, the displacement experiment were conducted in the etched-glass microscale model. Moreover, the coreflooding comparison experiments between decorated polyacrylamide and polymer were performed to investigate the displacement effect. The statistical analysis showed that the decorated polyacrylamide has excellent characteristics of salt tolerance, viscosity stability, and viscosification like polymer. Besides, the ability to reduce the interfacial tension in order 10−1 and emulsification, which were more similar to surfactant. Therefore, the decorated polyacrylamide was a multifunctional polymer. The displacement process captured by camera illustrated that the decorated polyacrylamide flooded oil mainly by means of ‘pull and drag’, ‘entrainment’, and ‘bridging’, based on the mechanism of viscosifying, emulsifying, and viscoelasticity. The results of the coreflooding experiment indicated that the recovery of decorated polyacrylamide can be improved by approximately 11–16% after water flooding when the concentration was more than 800 mg/L, which was higher than that of conventional polymer flooding. It should be mentioned that a new injection mode of ‘concentration reduction multi-slug’ was first proposed, and it obtained an exciting result of increasing oil production and decreasing water-cut, the effect of conformance control was more significant.


Author(s):  
Kuiqian Ma ◽  
Ao Li ◽  
Shuhao Guo ◽  
Jieqiong Pang ◽  
Yongchao Xue ◽  
...  

The multi-layer co-exploitation method is often used in offshore oilfields because of the large spacing between the injection and production wells. As oilfields gradually enter the high water-cut stage, the contradiction between the horizontal and vertical directions becomes more prominent, and the distribution of the remaining oil is more complex. Oilfields are facing unprecedented challenges in further enhancing oil recovery. Using oilfield A, which is in the high water-cut stage, as the research object, we compiled a detailed description of the remaining oil during the high water-cut stage using the information collected during the comprehensive adjustment and infilling of the oilfield. In addition various techniques for tapping the potential reservoir, stabilizing the oil, and controlling the water were investigated. A set of key techniques for the continuous improvement of the efficiency of water injection after comprehensive adjustment of high water-cut fields was generated. Based on the determined configuration of the offshore deltaic reservoir, a set of detailed descriptive methods and tapping technology for extracting the remaining oil in the offshore high water-cut oilfield after comprehensive adjustment was established. By considering the equilibrium displacement and using a new quantitative characterization method that includes displacement, a new technique for determining the quantity of water that needs to be injected into a stratified injection well during the high water-cut stage was established. Based on the principle of flow field intensity reconfiguration, a linear, variable-intensity, alternating injection and withdrawal technique was proposed. With the application of this series of techniques, the increase in the water content was controlled to within 1%, the natural reduction rate was controlled to within 9%, and the production increased by 1.060 × 107 m3.


Sign in / Sign up

Export Citation Format

Share Document