Improving Water Injectivity Through Lateral Radial Drilling into the Reservoir

2021 ◽  
Author(s):  
Effiong Essien ◽  
Uchenna Onyejiaka ◽  
Stanley Onwukwe ◽  
Nnaemeka Uwaezuoke

Abstract Poor formation permeability and near well bore damage may limit water injectivity into the reservoir in a water injection project. This paper seeks to evaluate the effect of radial drilling technique on water injectivity and oil recovery in water flooding operation. Radial drilling technology utilizes hydraulic energy to create lateral perpendicular small holes through the casing into the reservoir. The holes may extend to 100 m (330 ft) into the reservoir to access fresh formations beyond the near wellbore, and damage zone. A black oil simulator (Eclipse 100) was used to modeling a lateral radial drill from the borehole into the reservoir, and that of a conventional perforation of the wellbore respectively. A simulation study was carried out using various presumed radial drill configurations in determining injectivity index, displacement efficiencies, recovery factor and water cut of the process. The determined results were further compared with that of the conventional perforation process case respectively. The results show a significant improvement in water injectivity in radial drill case with the increasing length and number of radials as compared to the conventional wellbore perforation case. The determined Recovery factor shows a progressive increase with increase in the numbers of radials drilled, irrespective of the radial length. However, it was observed that, the more the number and length of the radials drilled in to the reservoir, the higher the water cut from producer wells. Radial Drilling Technology, therefore, has a promising potential to improving water injectivity into the reservoir and thereby optimizing oil recovery in a water flooding operation.

Author(s):  
Kuiqian Ma ◽  
Ao Li ◽  
Shuhao Guo ◽  
Jieqiong Pang ◽  
Yongchao Xue ◽  
...  

The multi-layer co-exploitation method is often used in offshore oilfields because of the large spacing between the injection and production wells. As oilfields gradually enter the high water-cut stage, the contradiction between the horizontal and vertical directions becomes more prominent, and the distribution of the remaining oil is more complex. Oilfields are facing unprecedented challenges in further enhancing oil recovery. Using oilfield A, which is in the high water-cut stage, as the research object, we compiled a detailed description of the remaining oil during the high water-cut stage using the information collected during the comprehensive adjustment and infilling of the oilfield. In addition various techniques for tapping the potential reservoir, stabilizing the oil, and controlling the water were investigated. A set of key techniques for the continuous improvement of the efficiency of water injection after comprehensive adjustment of high water-cut fields was generated. Based on the determined configuration of the offshore deltaic reservoir, a set of detailed descriptive methods and tapping technology for extracting the remaining oil in the offshore high water-cut oilfield after comprehensive adjustment was established. By considering the equilibrium displacement and using a new quantitative characterization method that includes displacement, a new technique for determining the quantity of water that needs to be injected into a stratified injection well during the high water-cut stage was established. Based on the principle of flow field intensity reconfiguration, a linear, variable-intensity, alternating injection and withdrawal technique was proposed. With the application of this series of techniques, the increase in the water content was controlled to within 1%, the natural reduction rate was controlled to within 9%, and the production increased by 1.060 × 107 m3.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoyan Wang ◽  
Jie Zhang ◽  
Guangyu Yuan ◽  
Wei Wang ◽  
Yanbin Liang ◽  
...  

Surfactant polymer (SP) flooding has become an important enhanced oil recovery (EOR) technique for the high-water cut mature oilfield. Emulsification in the SP flooding process is regarded as a powerful mark for the successful application of SP flooding in the filed scale. People believe emulsification plays a positive role in EOR. This paper uses one-dimensional homogenous core flooding experiments and parallel core flooding experiments to examine the effect of emulsification on the oil recoveries in the SP flooding process. 0.3 pore volume (PV) of emulsions which are prepared using ultralow interface intension (IFT) SP solution and crude oil with stirring method was injected into core models to mimic the emulsification process in SP flooding, followed by 0.35 PV of SP flooding to flood emulsions and remaining oil. The other experiment was preformed 0.65 PV of SP flooding as a contrast. We found SP flooding can obviously enhance oil recovery factor by 25% after water flooding in both homogeneous and heterogeneous cores. Compared to SP flooding, emulsification can contribute an additional recovery factor of 3.8% in parallel core flooding experiments. But there is no difference on recoveries in homogenous core flooding experiments. It indicates that the role of emulsification during SP flooding will be more significant for oil recoveries in a heterogeneous reservoir rather than a homogeneous reservoir.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Aifen Li ◽  
Xiaoxia Ren ◽  
Shuaishi Fu ◽  
Jiao Lv ◽  
Xuguang Li ◽  
...  

The application of water flooding is not successful for the development of low permeability reservoirs due to the fine pore sizes and the difficulty of water injection operation. CO2 can dissolve readily in crude oil and highly improve the mobility of crude oil, which makes CO2 flooding an effective way to the development of the ultralow-permeability reservoirs. The regularities of various CO2 displacement methods were studied via experiments implemented on cores from Chang 8 Formation of Honghe Oilfield. The results show that CO2 miscible displacement has the minimum displacement differential pressure and the maximum oil recovery; CO2-alternating-water miscible flooding has lower oil recovery, higher drive pressure, and relatively lower gas-oil ratio; water flooding has the minimum oil recovery and the maximum driving pressure. A large amount of oil still can be produced under a high gas-oil ratio condition through CO2 displacement method. This fact proves that the increase of gas-oil ratio is caused by the production of dissolved CO2 in oil rather than the free gas breakthrough. At the initial stage of CO2 injection, CO2 does not improve the oil recovery immediately. As the injection continues, the oil recovery can be improved rapidly. This phenomenon suggests that when CO2 displacement is performed at high water cut period, the water cut does not decrease immediately and will remain high for a period of time, then a rapid decline of water cut and increase of oil production can be observed.


2021 ◽  
Author(s):  
Songyuan Liu ◽  
Xiaochun Jin ◽  
Deji Liu ◽  
Hao Xu ◽  
Lidong Zhang ◽  
...  

Abstract Traditional Microbial Enhanced Oil Recovery (MEOR) technology assumes the oil recovery is increased by the biosurfactant generating by the subsurface bacteria. However, we identified that increased recovery factor is mainly contributed by stimulating the indigenous bacteria to plug the preferred waterflooding channels, which was proved at laboratory and some high-permeable oilfield, but never implemented in the waterflooding of tight oilfield. This paper presents a comprehensive study on Bio-diversion technique by stimulating indigenous bacteria covering lab research and filed operation lasting 18 months. The lab research comprised: (1) feasibility research using modified recipe and field sample on the stimulation of indigenous microorganisms; and (2) Evaluation of effectiveness of the stimulation based on lab results. A field pilot, consisting of 10 injectors, 10 producers, injecting and producing from multi-zones, reservoir temperature is about 160 F, permeabilities range from 30 md to over 100 md, daily water injection rate is about 2,000 BWPD, pre-treatment water cut is over 90%. It is observed that the water cut has decreased from 98% to 80% gradually (3-6 months after injection). Besides, the water injection index test indicates that the injection profile becomes more evenly after 9 months of microbial nutrient injection because the stimulated bacteria reduce the permeability of more permeable zones and reduce the permeability heterogeneity in the vertical direction. Sharing the field results with the industry may inspire the operators to consider one alternative environmentally friendly and cost-effective approach to increase the recovery factor of tight oil reservoirs. From the technical viewpoint, the field pilot proves that the major mechanisms of MEOR is sweeping the unswept oil by injecting the microbial nutrient to the reservoir to stimulate the indigenous bacteria to block the preferred waterflooding channels.


2021 ◽  
Vol 329 ◽  
pp. 01065
Author(s):  
Cong Nie

This paper, by conducting comprehensive analysis on water-flooding reservoir, intensively studied and discussed the characteristics of geological development, determined the evaluation indexes of development effect, carried out research from five steps, the first is the introduction part, it conducted indepth study and discussion from research background, research significance, literature review, and research methods four aspects. The second outlined the related theory from the optimization principle and mechanism of injection-production parameters, and the distribution mechanism of remaining oil two aspects. The third analyzed the current situation of reasonable injection-production of water-flooding reservoirs in Daqing Oilfield from reservoir characteristics and reservoir deposition. The fourth evaluated the water-flooding development effect from combined water cut, changing conditions of production and predicted recovery ratio. The fifth intensively studied the reasonable injection-production parameters of water- flooding reservoirs in Daqing oilfield from design of separated layer water injection plan, maintaining level reservoir formation pressure, and reasonable plan of injection-production ratio and oil recovery rate three aspects, and provides theoretical guidance for later targeted excavation of water-flooding reservoirs.


2021 ◽  
Author(s):  
Valentina Zharko ◽  
Dmitriy Burdakov

Abstract The paper presents the results of a pilot project implementing WAG injection at the oilfield with carbonate reservoir, characterized by low efficiency of traditional waterflooding. The objective of the pilot project was to evaluate the efficiency of this enhanced oil recovery method for conditions of the specific oil field. For the initial introduction of WAG, an area of the reservoir with minimal potential risks has been identified. During the test injections of water and gas, production parameters were monitored, including the oil production rates of the reacting wells and the water and gas injection rates of injection wells, the change in the density and composition of the produced fluids. With first positive results, the pilot area of the reservoir was expanded. In accordance with the responses of the producing wells to the injection of displacing agents, the injection rates were adjusted, and the production intensified, with the aim of maximizing the effect of WAG. The results obtained in practice were reproduced in the simulation model sector in order to obtain a project curve characterizing an increase in oil recovery due to water-alternating gas injection. Practical results obtained during pilot testing of the technology show that the injection of gas and water alternately can reduce the water cut of the reacting wells and increase overall oil production, providing more efficient displacement compared to traditional waterflooding. The use of WAG after the waterflooding provides an increase in oil recovery and a decrease in residual oil saturation. The water cut of the produced liquid decreased from 98% to 80%, an increase in oil production rate of 100 tons/day was obtained. The increase in the oil recovery factor is estimated at approximately 7.5% at gas injection of 1.5 hydrocarbon pore volumes. Based on the received results, the displacement characteristic was constructed. Methods for monitoring the effectiveness of WAG have been determined, and studies are planned to be carried out when designing a full-scale WAG project at the field. This project is the first pilot project in Russia implementing WAG injection in a field with a carbonate reservoir. During the pilot project, the technical feasibility of implementing this EOR method was confirmed, as well as its efficiency in terms of increasing the oil recovery factor for the conditions of the carbonate reservoir of Eastern Siberia, characterized by high water cut and low values of oil displacement coefficients during waterflooding.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 446 ◽  
Author(s):  
Lei Zhang ◽  
Nasir Khan ◽  
Chunsheng Pu

Due to the strong heterogeneity between the fracture and the matrix in fractured oil reservoirs, injected water is mainly moved forward along the fracture, which results in poor water flooding. Therefore, it is necessary to reduce the water cut and increase oil production by using the conformance control technology. So far, gel particles and partially hydrolyzed polyacrylamide (HPAM)/Cr3+ gel are the most common applications due to their better suitability and low price. However, either of the two alone can only reduce the conductivity of the fracture to a certain extent, which leads to a poor effect. Therefore, to efficiently plug the fracture to enhance oil recovery, a combination of gel particles and the HPAM/Cr3+ system is used by laboratory tests according to their respective advantages. The first step is that the gel particles can compactly and uniformly cover the entire fracture and then the fracture channel is transformed into the gel particles media. This process can enhance the oil recovery to 18.5%. The second step is that a suitable HPAM/Cr3+ system based on the permeability of the gel particles media is injected in the fractured core. Thus, the fracture can be completely plugged and the oil in the matrix of the fractured core can be displaced by water flooding. This process can enhance oil recovery to 10.5%. During the whole process, the oil recovery is increased to 29% by this method. The results show that this principle can provide a new method for the sustainable and efficient development of fractured oil reservoirs.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Shibao Yuan ◽  
Rui Wang ◽  
Haiyan Jiang ◽  
Qing Xie ◽  
Shengnan Chen ◽  
...  

The complex fault block reservoir has the characteristics of small area and many layers in vertical. Due to the influence of formation heterogeneity and well pattern, the situation that “water fingering is serious with water injection, on the contrary, driving energy is low” frequently occurs in water flooding, which makes it difficult to enhance oil recovery. Asynchronous injection-production (AIP) process divides the conventional continuous injection-production process into two independent processes: injection stage and production stage. In order to study oil recovery in the fault block reservoir by AIP technology, a triangle closed block reservoir is divided into 7 subareas. The result of numerical simulation indicates that all subareas have the characteristic of fluid diverting and remaining oil in the central area is also affected by injected water at injection stage of AIP technology. Remaining oil in the central area is driven to the included angle and border area by injected water and then produced at the production stage. Finally, the oil recovery in the central area rises by 5.2% and in the noncentral area is also increased in different levels. The AIP process can realize the alternative change of reservoir pressure, change the distribution of flow field, and enlarge the swept area by injected water. To sum it up, the AIP process is an effective method to improve the oil recovery in complex fault-block reservoir by water flooding.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Yongfei Yang ◽  
Haiyuan Yang ◽  
Liu Tao ◽  
Jun Yao ◽  
Wendong Wang ◽  
...  

To investigate the characteristics of oil distribution in porous media systems during a high water cut stage, sandstones with different permeability scales of 53.63 × 10−3 μm2 and 108.11 × 10−3 μm2 were imaged under a resolution of 4.12 μm during a water flooding process using X-ray tomography. Based on the cluster-size distribution of oil segmented from the tomography images and through classification using the shape factor and Euler number, the transformation of the oil distribution pattern in different injection stages was studied for samples with different pore structures. In general, the distribution patterns of an oil cluster continuously change during water injection. Large connected oil clusters break off into smaller segments. The sandstone with a higher permeability (108.11 × 10−3 μm2) shows the larger change in distribution pattern, and the remaining oil is trapped in the pores with a radius of approximately 7–12 μm. Meanwhile, some disconnected clusters merge together and lead to a re-connection during the high water cut period. However, the pore structure becomes compact and complex, the residual nonwetting phase becomes static and is difficult to move; and thus, all distribution patterns coexist during the entire displacement process and mainly distribute in pores with a radius of 8–12 μm. For the pore-scale entrapment characteristics of the oil phase during a high water cut period, different enhance oil recovery (EOR) methods should be considered in sandstones correspondent to each permeability scale.


2018 ◽  
Vol 785 ◽  
pp. 159-170
Author(s):  
Vadim Aleksandrov ◽  
Kirill Galinskij ◽  
Andrey Ponomarev ◽  
Vadim Golozubenko ◽  
Yuriy Sivkov

One of the most important aspects in the activities of oil companies in the Western Siberia is to improve the effectiveness of water-flooding as the main method of impact on the formation. This is due to the fact that at the present time reservoirs of a complex structure with difficult to recover reserves prevail among newly introduced development objects, the extraction of which is extremely difficult using a simple method of water injection volumes regulation. First of all, this refers to reservoirs of Jurassic deposits, which are characterized by the most complex geological structure and porosity and permeability properties. A promising direction in improving the water-flooding system at such objects is the use of physical and chemical technologies to enhance the oil recovery of formations, and primarily, referring to the diverter technology. The research objective is to evaluate the effectiveness of using “hard” type diverter compositions to enhance oil recovery of formations. With the help of detailed oil-field analysis and field-geophysical studies, the nature of the development of oil reserves for Jurassic development sites has been assessed.


Sign in / Sign up

Export Citation Format

Share Document