scholarly journals Experimental studies of the various soils bedding influence on the stress-strain state of a layered subsoil base of the slab foundation

2021 ◽  
Vol 274 ◽  
pp. 03021
Author(s):  
Lenar Siraziev ◽  
Danil Sergeev

The purpose of the study is to reveal the effect of the stress-strain state of the three-layer soil base of the slab foundation with a rigid underlying layer, which is heterogeneous along the depth of the ground. The main results of the study are obtaining relative deformations in the soil massif and the settlement of ground values of each layer. The results of experimental studies are obtained in the form of a deformation pattern of a layered base, distribution graphs of compressive stresses in the soil in depth and in a horizontal plane. The significance of the results achieved for the construction area is to establish the mutual influence of various soils on the stress-strain state of the laminate basement of the slab foundation. The presence of a dense top layer in a laminate base significantly increases its distribution ability. The stress distribution is proportional to the load-carrying capacity of the individual base layers. On the boundary between the layers, a jump in the compressive stresses may occur, which indicates the presence of shear deformations in the contact layer.

2019 ◽  
Vol 13 (2) ◽  
pp. 110-115
Author(s):  
Olena Krantovska ◽  
Mykola Petrov ◽  
Liubov Ksonshkevych ◽  
Matija Orešković ◽  
Sergii Synii ◽  
...  

The article describes a developed technique of a numerical simulation of the stress-strain state of complex-reinforced elements, which allows you to create models of double-span continuous. The performed experimental and theoretical studies allowed us to carry out the testing of the developed design model and to justify the reliability of the proposed numerical simulation methodology. The results of the experimental studies were compared with those of the theoretical studies. The theoretical calculus algorithm was developed by using the finite element method. Theoretical calculations were performed by using the mathematical-graphical environment software system LIRA-SOFT and the mathematical and computer program MATLAB. On the basis of the experimental research, the iso-fields of displacements and stresses in the materials of an eccentrically compressed beam with a small bend of the slab were constructed, which collapse behind the inclined narrow strip of concrete and displacements and stresses in the materials of the eccentrically stretched beam, which is destroyed due to the yield of the upper mounting armature.


2019 ◽  
Vol 123 ◽  
pp. 01006 ◽  
Author(s):  
Iryna Kovalevska ◽  
Zenon Pilecki ◽  
Oleksandr Husiev ◽  
Vasyl Snihur

The degree of influence has been determined of diversified deformation-strength characteristics of load-bearing elements in the fastening system of the preparatory mine workings, while maintaining them in a laminal massif of soft rocks. The analysis has been performed of multivariate computational experiments of the stress-strain state of the load-bearing elements of the fastening system in the preparatory mine workings from the position of the mutual influence of their deformation-strength characteristics and the support loading as a whole. An analysis is represented of the mutual influence of the operation modes of the mine working support elements between themselves and the fastening system as a whole; it has been studied the stress-strain state of the mine working fastening system with a central hydraulic prop stay, as well as a significant increase in reliability of the support performance has been analysed and determined. The tendency has been substantiated of minimizing the load on the mine working fastening system – increasing the coherence of the diversified operation modes of fastening elements by enhancing preferentially the yielding property of the rigid element. The application has been substantiated of the central yielding prop stays of the strengthening support of a frame in case of intensive rock pressure manifestation in the zone of the stope works active influence.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022030
Author(s):  
A V Kramskoi ◽  
Y G Lyudmirsky ◽  
M E Zhidkov ◽  
M I Kramskaia

Abstract To extend the service life of nuclear reactors, witness samples from the shells of the core of the reactor vessel are placed in their core. According to the requirements in force in the industry, the reference samples are loaded into the reactor plant unloaded up to the design stresses. This can lead to a biased assessment of the possible extension of the reactor’s life. In connection with the above, in order to assess the mutual influence of operating factors and the stress-strain state of the base metal and welded joints on embrittlement, the reference specimens must be loaded with a force that causes the maximum possible stresses in the specimens during the operation of the reactor. On the basis of domestic and international experience, a test procedure, design and loading scheme for compact witness samples are proposed for modeling and assessing the mutual influence of operating factors and stress-strain state on the object under study (VVER power reactor vessel). For VVER RPVs, the duration of the additional service life should be confirmed by the justification that by the end of the additional service life, the fracture toughness values of the base metal and metal of the welded seams located in the irradiation zone will allow without destruction to withstand all operational and emergency loads, as well as loads at hydraulic tests.


Vestnik MGSU ◽  
2016 ◽  
pp. 17-26 ◽  
Author(s):  
Vladimir Igorevich Andreev ◽  
Robert Alekseevich Turusov ◽  
Nikita Yur’evich Tsybin

The article deals with the solution for the stress-strain state of a multilayer composite beam with rectangular cross-section, which is bended by normally distributed load. The intermolecular interaction between layers is accomplished by the contact layer, in which the substances of adhesive and substrate are mixed. We consider the contact layer as a transversal anisotropic medium with such parameters that it can be represented as a set of short elastic rods, which are not connected to each other. For simplicity, we assume that the rods are normally oriented to the contact surface. The contact layer method allows us to solve the problem of determining the concentration of tangential stresses arising at the boundaries between the layers and the corner points, their changes, as well as to determine the physical properties of the contact layer basing on experimental data. Resolving the equations obtained in this article can be used for the solution of many problems of the theory of layered substances. These equations were derived from the fundamental laws of the theory of elasticity and generally accepted hypotheses of the theory of plates for the general case of the bending problem of a multilayer beam with any number of layers. The article deals with the example of the numerical solution of the problem of bending of a three-layer beam. On the basis of this solution the curves were obtained, which reflect the stress-strain state of one of the layers. All these curves have a narrow area of the edge effect. The edge effect is associated with a large gradient tangential stresses in the contact layer. The experimental data suggest that in this zone the destruction of the samples occurs. This fact allows us to say that the equations obtained in this article can be used to construct a theory of the strength layered beams under bending.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292
Author(s):  
Sergei V. Smirnov ◽  
Vladimir V. Kopylov ◽  
Alexander R. Makarov ◽  
Alexander A. Vorobyev ◽  
Kirill V. Shkarin

The article describes the features developed by the authors of the profiling method of the piston skirt, provides the main parameters that affect the lubrication conditions of the piston skirt and the magnitude of mechanical losses. In computational studies, the basic formulas are given for determining the thickness of the oil layer in a piston skirt - cylinder sleeve conjunction to assess the nature of friction. To determine the deformations, the finite element method is used on the spatial model of the piston. To verify the finite element model, a stand for experimental studies was developed. The article describes the developed stand, the methodology and results of experimental studies of the stress-strain state of the two-piece piston skirt obtained at this stand and a comparative analysis of the results of the calculated and experimental studies of the stress-strain state of the two-piece piston skirt of a diesel engine. The research results showed that the developed stand can be used to verify mathematical models for calculating the stress-strain state of the piston skirt in the pilot production of internal combustion engine pistons to accelerate and reduce the cost of the piston design development process, as well as the results of experimental studies obtained at the stand, can be used as initial data for the developed mathematical model of the dynamics of the movement of the piston and the profiling of the piston skirt.


2019 ◽  
Vol 109 ◽  
pp. 00047
Author(s):  
Serhii Kurnosov ◽  
Volodymyr Zerkal

A method for calculating gas permeability of the rock massif depending on its stress-strain state is presented. By using methods of the mine experimental studies, influence of mining operations in the adjacent long walls on intensity of gas release from the previously worked-out long-pillar was determined, as well as impact of the massif stress-strain state on efficiency of the drainage boreholes. Formulas were obtained for calculating coefficients of the impact of zones with static and dynamic abutment pressure on intensity of gas draining in the previously worked-out long-pillar.


Author(s):  
Артем Николаевич Задумин ◽  
Евгений Григорьевич Ильин ◽  
Михаил Владимирович Лиховцев ◽  
Алексей Александрович Катанов

Устранение дефектов металла и сварных швов стенок вертикальных цилиндрических резервуаров возможно методом вырезки и замены удаленных фрагментов ремонтными вставками с использованием рам жесткости. При этом в нормативных документах отсутствуют методики расчета таких усиливающих элементов и собственно конструкции стенки резервуара с данными элементами. С целью оценки прочности и устойчивости стенки резервуара и рамы жесткости во время проведения ремонтных работ выполнено компьютерное моделирование и проведены расчеты напряженно-деформированного состояния указанных металлоконструкций. В рамках исследования рассмотрены основные российские и зарубежные нормативные документы, регламентирующие нагрузки и методики расчета устойчивости стенки резервуара, проанализированы публикации, посвященные расчету устойчивости стенки резервуара с применением компьютерного моделирования. Приведены результаты компьютерного моделирования и расчетов на прочность и устойчивость в зависимости от снеговой и ветровой нагрузок. По итогам выполненных работ сделаны следующие выводы: 1) расчеты должны учитывать ветровую нагрузку, действующую под углом 40° к вырезаемому фрагменту; 2) допустимые размеры одной вставки не должны превышать габариты одного листа пояса резервуара; 3) не рекомендуется одновременная вырезка и замена более чем одного фрагмента; 4) при необходимости возможность одновременной вырезки проемов в двух и более местах должна определяться расчетом, учитывающим взаимное влияние количества, расположения и размеров проемов на напряженно-деформированное состояние стенки резервуара и рам жесткости. Elimination of metal defects and welds in the walls of vertical cylindrical tanks is possible by cutting out and replacing the removed fragments with repair inserts using stiffening frames. At the same time, there are no methods for calculating such reinforcing elements and the actual structure of the tank wall with these elements in the regulatory documents. In order to assess the strength and stability of the tank wall and the stiffening frame during the repair work, computer modeling was performed and the stress-strain state of these metal structures was calculated. Within the framework of the research the main Russian and foreign normative documents regulating the loads and methods of tank wall stability calculation are considered; the publications devoted to the tank wall stability calculation by means of computer modeling are analyzed. The results of computer modeling and calculations for strength and stability depending on snow and wind loads are presented. Results of the research performed were used to make the following conclusions: 1) calculations should take into account the wind load, acting at an angle of 40° to the section to be cut out; 2) the allowable dimensions of one insert should not exceed the dimensions of one sheet of the tank ring; 3) simultaneous cutting out and replacement of more than one section is not recommended; 4) if necessary simultaneous cutting of openings in two or more places should be determined by calculation, taking into account the mutual influence of the number, location and sizes of openings on the stress-strain state of the tank wall and stiffening frames.


Author(s):  
E. E. Richter ◽  

The element of the upper structure of the railway track - the switch counter-rail lining is studied. A variant of the serial design of the PKZhDL-65-4 counter-rail lining is considered. The analysis of the failure rate of counter-rail linings is carried out, and the results of observations of the condition of the linings in different regions are presented. The destruction zone is localized and its character as a multi-cycle fatigue destruction is determined. The information about the conducted complex of experimental studies for investigation of the stress-strain state in the dangerous zone of the lining is presented. To carry out the design studies, the design schemes of the counter-rail lining were developed. Calculated studies of the influence of various factors on the level of stresses acting in the hazardous area of the structure are performed. The influence of the type of the design scheme, the stiffness of the rubber shock-absorbing lining and the properties of the sleeper material is studied. Variants of counter-rail lining designs for reducing the level of stresses acting in the dangerous zone are proposed. Computational studies were conducted to optimize the proposed lining options in order to reduce material consumption. The results of testing of new lining structures on the switches of the South Ural Railway are presented. The information about the conducted complex of experimental studies for investigation of the stress-strain state in the dangerous zone of the lining is presented. To carry out the design studies, the design schemes of the counter-rail lining were developed. Calculated studies of the influence of various factors on the level of stresses acting in the hazardous area of the structure are performed. The influence of the type of the design scheme, the stiffness of the rubber shock-absorbing lining and the properties of the sleeper material is studied. Variants of counter-rail lining designs for reducing the level of stresses acting in the dangerous zone are proposed. Computational studies were conducted to optimize the proposed lining options in order to reduce material consumption. The results of testing of new lining structures on the switches of the South Ural Railway are presented.


Sign in / Sign up

Export Citation Format

Share Document