scholarly journals Development of an information and analytical model of soils based on X-ray fluorescence analysis

2021 ◽  
Vol 282 ◽  
pp. 07016
Author(s):  
E.M. Basarygina ◽  
N.A. Pakhomova ◽  
O.E. Akulich

The purpose of the research was to build information and analytical models of the soil based on the data of energy-dispersive X-ray fluorescence analysis. For the soil of the Chelyabinsk region, on the basis of experimental data, information and analytical models are constructed, showing a complete list of chemical elements and trace elements, the content of which exceeds the permissible concentration. These models, which clearly reflect the content of micro-and macronutrients in the soil, are recommended for use in the development of measures for soil reclamation and the involvement of fallow lands in agricultural turnover.

Author(s):  
D. A. Carpenter ◽  
Ning Gao ◽  
G. J. Havrilla

A monolithic, polycapillary, x-ray optic was adapted to a laboratory-based x-ray microprobe to evaluate the potential of the optic for x-ray micro fluorescence analysis. The polycapillary was capable of collecting x-rays over a 6 degree angle from a point source and focusing them to a spot approximately 40 µm diameter. The high intensities expected from this capillary should be useful for determining and mapping minor to trace elements in materials. Fig. 1 shows a sketch of the capillary with important dimensions.The microprobe had previously been used with straight and with tapered monocapillaries. Alignment of the monocapillaries with the focal spot was accomplished by electromagnetically scanning the focal spot over the beveled anode. With the polycapillary it was also necessary to manually adjust the distance between the focal spot and the polycapillary.The focal distance and focal spot diameter of the polycapillary were determined from a series of edge scans.


2020 ◽  
Author(s):  
E. V. Kochergina ◽  
A. O. Vagina ◽  
A. O. Taukin ◽  
A. V. Abramov ◽  
G. M. Bunkov ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 305
Author(s):  
Mikhail V. Chernyshov ◽  
Karina E. Savelova ◽  
Anna S. Kapralova

In this study, we obtain the comparative analysis of methods of quick approximate analytical prediction of Mach shock height in planar steady supersonic flows (for example, in supersonic jet flow and in narrowing channel between two wedges), that are developed since the 1980s and being actively modernized now. A new analytical model based on flow averaging downstream curved Mach shock is proposed, which seems more accurate than preceding models, comparing with numerical and experimental data.


2019 ◽  
Author(s):  
Andrew McCluskey ◽  
Tom Arnold ◽  
Joshaniel F. K. Cooper ◽  
Tim Snow

The analysis of neutron and X-ray reflectometry data is important for the study of interfacial soft matter structures. However, there is still substantial discussion regarding the analytical models<br>that should be used to rationalise relflectometry data. In this work, we outline a robust and generic framework for the determination of the evidence for a particular model given experimental data, by<br>applying Bayesian logic. We apply this framework to the study of Langmuir-Blodgett monolayers by considering three possible analytical models from a recently published investigation [Campbell et al., J. Colloid Interface Sci, 2018, 531, 98]. From this, we can determine which model has the most evidence given the experimental data, and show the effect that different isotopic contrasts of neutron reflectometry will have on this. We believe that this general framework could become an important component of neutron and X-ray reflectometry data analysis, and hope others more regularly consider the relative evidence for their analytical models.<br>


1968 ◽  
Vol 22 (4) ◽  
pp. 321-324 ◽  
Author(s):  
Frank Cuttitta ◽  
Harry J. Rose

A new approach to solving matrix problems in x-ray fluorescence analysis of trace elements has been applied to the determination of bromine in saline waters and zinc in silicates. The method requires no prior knowledge of the chemical composition of the sample. Marked matrix effects are minimized by dilution, and the problem of variable backgrounds due to residual matrix effects is solved by using a slope-ratio technique. In this proposed technique, the slope of a standard curve prepared from pure solutions is compared with that of spiked samples. The ratio of the slopes of these two curves permits the calculation of an adjusted background which does not significantly differ from that of an absorbent impregnated with the sample matrix free of the element sought. Experimental parameters concerning the technique are presented. The excellent agreement of the zinc and bromine data with analytical results obtained by more conventional methods suggests that the technique can be used for the determination of other trace constituents in geologic materials. Application of the slope-ratio technique to other modes of instrumental analysis appears feasible.


1982 ◽  
Vol 26 ◽  
pp. 351-354 ◽  
Author(s):  
Michael Mantler

Two principal mathematical methods are used for quantitative XRFA: fundamental parameter calculations and the evaluation of empirical parameter equations. A comprehensive computer program based upon fundamental parameter equations was introduced in 1976 by D. Laguitton and M. Mantler (LAMA-I) and improved by T. C. Huang in 1979 (LAMA-II). The present paper describes the features of the theoretical background of a computer program using a new type of empirical (alpha*-) parameter equations. It is essentially designed for convenient analysis of compounds including those containing chemical elements, that cannot be directly measured by conventional X-ray spectrometers, such as oxides, nitrides, and others. The program also communicates automatically with LAMA in order to establish theoretical tables of alpha*-coefficients as well as conventional alpha-coefficients.


Sign in / Sign up

Export Citation Format

Share Document