scholarly journals A method to analyse urban heatwaves. Case study - Bucharest City (Romania)

2021 ◽  
Vol 286 ◽  
pp. 04004
Author(s):  
Daniela-Elena Gogoașe-Nistoran ◽  
Daniel-Marian Antohe ◽  
Ioana Opriș ◽  
Cristina-Sorana Ionescu

Long-term variation of hourly air temperature obtained from Open Weather, Romania, was analysed in the center of Bucharest city, over a period of 40 years (1980-2020). A computer program to extract summer heatwaves within the study period was written. Analysing the results an extreme heatwave scenario has been defined within the context of climate change and urban influence, to be used in future air and water temperature models.

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1109
Author(s):  
Nobuaki Kimura ◽  
Kei Ishida ◽  
Daichi Baba

Long-term climate change may strongly affect the aquatic environment in mid-latitude water resources. In particular, it can be demonstrated that temporal variations in surface water temperature in a reservoir have strong responses to air temperature. We adopted deep neural networks (DNNs) to understand the long-term relationships between air temperature and surface water temperature, because DNNs can easily deal with nonlinear data, including uncertainties, that are obtained in complicated climate and aquatic systems. In general, DNNs cannot appropriately predict unexperienced data (i.e., out-of-range training data), such as future water temperature. To improve this limitation, our idea is to introduce a transfer learning (TL) approach. The observed data were used to train a DNN-based model. Continuous data (i.e., air temperature) ranging over 150 years to pre-training to climate change, which were obtained from climate models and include a downscaling model, were used to predict past and future surface water temperatures in the reservoir. The results showed that the DNN-based model with the TL approach was able to approximately predict based on the difference between past and future air temperatures. The model suggested that the occurrences in the highest water temperature increased, and the occurrences in the lowest water temperature decreased in the future predictions.


Author(s):  
V. V. Hrynchak

The decision about writing this article was made after familiarization with the "Brief Climatic Essay of Dnepropetrovsk City (prepared based on observations of 1886 – 1937)" written by the Head of the Dnipropetrovsk Weather Department of the Hydrometeorological Service A. N. Mikhailov. The guide has a very interesting fate: in 1943 it was taken by the Nazis from Dnipropetrovsk and in 1948 it returned from Berlin back to the Ukrainian Hydrometeorological and Environmental Directorate of the USSR, as evidenced by a respective entry on the Essay's second page. Having these invaluable materials and data of long-term weather observations in Dnipro city we decided to analyze climate changes in Dnipropetrovsk region. The article presents two 50-year periods, 1886-1937 and 1961-2015, as examples. Series of observations have a uniform and representative character because they were conducted using the same methodology and results processing. We compared two main characteristics of climate: air temperature and precipitation. The article describes changes of average annual temperature values and absolute temperature values. It specifies the shift of seasons' dates and change of seasons' duration. We studied the changes of annual precipitation and peculiarities of their seasonable distribution. Apart from that peculiarities of monthly rainfall fluctuations and their heterogeneity were specified. Since Dnipro city is located in the center of the region the identified tendencies mainly reflect changes of climatic conditions within the entire Dnipropetrovsk region.


2015 ◽  
Vol 105 (5) ◽  
pp. 232-236 ◽  
Author(s):  
Raymond Guiteras ◽  
Amir Jina ◽  
A. Mushfiq Mobarak

A burgeoning “Climate-Economy” literature has uncovered many effects of changes in temperature and precipitation on economic activity, but has made considerably less progress in modeling the effects of other associated phenomena, like natural disasters. We develop new, objective data on floods, focusing on Bangladesh. We show that rainfall and self-reported exposure are weak proxies for true flood exposure. These data allow us to study adaptation, giving accurate measures of both long-term averages and short term variation in exposure. This is important in studying climate change impacts, as people will not only experience new exposures, but also experience them differently.


2021 ◽  
Author(s):  
Hanna Bolbot ◽  
Vasyl Grebin

<p>The current patterns estimation of the water regime under climate change is one of the most urgent tasks in Ukraine and the world. Such changes are determined by fluctuations in the main climatic characteristics - precipitation and air temperature, which are defined the value of evaporation. These parameters influence on the annual runoff distribution and long-term runoff fluctuations. In particular, the annual precipitation redistribution is reflected in the corresponding changes in the river runoff.<br>The assessment of the current state and nature of changes in precipitation and river runoff of the Siverskyi Donets River Basin was made by comparing the current period (1991-2018) with the period of the climatological normal (1961-1990).<br>In general, for this area, it was defined the close relationship between the amount of precipitation and the annual runoff. Against the background of insignificant (about 1%) increase of annual precipitation in recent decades, it was revealed their redistribution by seasons and separate months. There is a decrease in precipitation in the cold period (November-February). This causes (along with other factors) a decrease in the amount of snow and, accordingly, the spring flood runoff. There are frequent cases of unexpressed spring floods of the Siverskyi Donets River Basin. The runoff during March-April (the period of spring flood within the Ukrainian part of the basin) decreased by almost a third.<br>The increase of precipitation during May-June causes a corresponding (insignificant) increase in runoff in these months. The shift of the maximum monthly amount of precipitation from May (for the period 1961-1990) to June (in the current period) is observed.<br>There is a certain threat to water supply in the region due to the shift in the minimum monthly amount of precipitation in the warm period from October to August. Compared with October, there is a higher air temperature and, accordingly, higher evaporation in August, which reduces the runoff. Such a situation is solved by rational water resources management of the basin. The possibility of replenishing water resources in the basin through the transfer runoff from the Dnieper (Dnieper-Siverskyi Donets channel) and the annual runoff redistribution in the reservoir system causes some increase in the river runoff of summer months in recent decades. This is also contributed by the activities of the river basin management structures, which control the maintenance water users' of minimum ecological flow downstream the water intakes and hydraulic structures in the rivers of the basin.<br>Therefore, in the period of current climate change, the annual runoff distribution of the Siverskyi Donets River Basin has undergone significant changes, which is related to the annual precipitation redistribution and anthropogenic load on the basin.</p>


2021 ◽  
Author(s):  
Thibault Mathevet ◽  
Cyril Thébault ◽  
Jérôme Mansons ◽  
Matthieu Le Lay ◽  
Audrey Valery ◽  
...  

<p>The aim of this communication is to present a study on climate variability and change on snow water equivalent (SWE) and streamflow over the 1900-2100 period in a mediteranean and moutainuous area.  It is based on SWE and streamflow observations, past reconstructions (1900-2018) and future GIEC scenarii (up to 2100) of some snow courses and hydrological stations situated within the French Southern Alps (Mercantour Natural Parc). This has been conducted by EDF (French hydropower company) and Mercantour Natural Parc.</p><p>This issue became particularly important since a decade, especially in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production or impacts on mountainous ecosystems (fauna and flora). As a water resources manager in French mountainuous regions, EDF developed and managed a large hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurements of a hundred of snow courses within the French Alps. EDF have been operating an automatic SWE sensors network, complementary to historical snow course network. Based on numerous SWE observations time-series and snow modelization (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2018 period. These reconstructions have been extented to 1900 using 20 CR (20<sup>th</sup> century reanalyses by NOAA) reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii (+4.5 W/m² and + 8.5 W/m² hypotheses). In the scope of this study, Mercantour Natural Parc is particularly interested by snow scenarii in the future and its impacts on their local flora and fauna.</p><p>Considering observations within Durance watershed and Mercantour region, this communication focuses on: (1) long term (1900-2018) analyses of variability and trend of hydrometeorological and snow variables (total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length, streamflow regimes) , (2) long term variability of snow and hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii.</p><p>Comparing old period (1950-1984) to recent period (1984-2018), quantitative results within these regions roughly shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season duration by 15 days. Characterization of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. Then, this communication focuses on impacts on long-term time scales (2050, 2100). This long term change of snow dynamics within moutainuous regions both impacts (1) water resources management, (2) snow resorts and artificial snow production developments or (3) ecosystems dynamics.Connected to the evolution of snow seasonality, the impacts on hydrological regime and some streamflow signatures allow to characterize the possible evolution of water resources in this mediteranean and moutianuous region This study allowed to provide some local quantitative scenarii.</p>


Author(s):  
Valentina Petrovna Gorbatenko ◽  
Marina Alexandrovna Volkova ◽  
Olga Vladimirovna Nosyreva ◽  
George Georgievich Zhuravlev ◽  
Irina Valerievna Kuzhevskaia

Current climate changes in Russia are attended by the increase in frequency of dangerous weather events. This chapter researches long-term variations of the dangerous weather's events on Western Siberia and to reveal general regularity, which can be associated with forest fires. The researches have been carried out for the territories of southeast of Western Siberia. The duration of the fire season increases due to climate change. This is due both to the earlier snowfall and the onset of the phenological spring, and to the increase in the duration of the thunderstorm period. Thunderstorms in Siberia are a much more frequent cause of forest fires (28%) than in other territories. Wildfire frequency is correlated with air temperature and drought anomalies.


Sign in / Sign up

Export Citation Format

Share Document