scholarly journals Performance Comparison of Malaysian Air Pollution Index Prediction Using Nonlinear Autoregressive Exogenous Artificial Neural Network and Support Vector Machine

2021 ◽  
Vol 287 ◽  
pp. 04001
Author(s):  
Rosminah Mustakim ◽  
Mazlina Mamat

This paper compares the performance of Nonlinear Autoregressive Exogenous (NARX) Neural Network and Support Vector Machine (SVM) regression model to predict the Air Pollutant Index (API) in Malaysia. Two models namely the NARX and SVM regression were developed using the API and air quality time series data from three monitoring stations: Pasir Gudang, TTDI Jaya and Larkin. Hourly data of API and air quality parameters collected in year 2016 and 2018 were utilized to produce one step ahead API prediction. The air quality parameters consist of the NO2, SO2, CO, O3, PM2.5, PM10 concentration as well as three meteorological parameters which are wind speed, wind direction and ambient temperature. The NARX model was realized using a series-parallel feed-forward network. For the SVM regression model, different kernel functions: Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian and Coarse Gaussian were evaluated. The performance of NARX and SVM regression was measured using the Root Mean Square Error (RMSE) and Coefficient of Determination (R2) values. Results show that the NARX model outperformed the SVM regression model in both 2016 and 2018 data respectively.

2021 ◽  
Vol 16 ◽  
Author(s):  
Farida Alaaeldin Mostafa ◽  
Yasmine Mohamed Afify ◽  
Rasha Mohamed Ismail ◽  
Nagwa Lotfy Badr

Background: Protein sequence analysis helps in the prediction of protein functions. As the number of proteins increases, it gives the bioinformaticians a challenge to analyze and study the similarity between them. Most of the existing protein analysis methods use Support Vector Machine. Deep learning did not receive much attention regarding protein analysis as it is noted that little work focused on studying the protein diseases classification. Objective: The contribution of this paper is to present a deep learning approach that classifies protein diseases based on protein descriptors. Methods: Different protein descriptors are used and decomposed into modified feature descriptors. Uniquely, we introduce using Convolutional Neural Network model to learn and classify protein diseases. The modified feature descriptors are fed to the Convolutional Neural Network model on a dataset of 1563 protein sequences classified into 3 different disease classes: Aids, Tumor suppressor, and Proto oncogene. Results: The usage of the modified feature descriptors shows a significant increase in the performance of the Convolutional Neural Network model over Support Vector Machine using different kernel functions. One modified feature descriptor improved by 19.8%, 27.9%, 17.6%, 21.5%, 17.3%, and 22% for evaluation metrics: Area Under the Curve, Matthews Correlation Coefficient, Accuracy, F1-score, Recall, and Precision, respectively. Conclusion: Results show that the prediction of the proposed modified feature descriptors significantly surpasses that of Support Vector Machine model.


2009 ◽  
Vol 18 (06) ◽  
pp. 929-947 ◽  
Author(s):  
LI ZHANG ◽  
YU-GENG XI ◽  
WEI-DA ZHOU

Support vector machine (SVM) is a universal learning method. In this paper, an affine support vector machine (ASVM) for regression is presented for identification and control of input-affine nonlinear models. ASVM is a variant of SVM and so inherits its merits. The solution to ASVM is cast into a convex quadratic programming (QP). Hence ASVM has a unique global solution. In addition, the curse of dimensionality is avoided because ASVM is insensitive to the dimensionality of data. A commonly used model for a nonlinear system is a nonlinear autoregressive exogenous (NARX) model. ASVM could get good performance in both identification and control if a NARX model can be well represented by an input-affine nonlinear model. The experimental results validate the efficiency of ASVM in identification and control of discrete-time nonlinear systems.


2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 636
Author(s):  
Alhassan Mabrouk ◽  
Rebeca P. Díaz Redondo ◽  
Mohammed Kayed

Recently, it has been found that e-commerce (EC) websites provide a large amount of useful information that exceed the human cognitive processing capacity. In order to help customers in comparing alternatives when buying a product, previous research authors have designed opinion summarization systems based on customer reviews. They ignored the template information provided by manufacturers, although its descriptive information has the most useful product characteristics and texts are linguistically correct, unlike reviews. Therefore, this paper proposes a methodology coined as SEOpinion (summarization and exploration of opinions) to summarize aspects and spot opinion(s) regarding them using a combination of template information with customer reviews in two main phases. First, the hierarchical aspect extraction (HAE) phase creates a hierarchy of aspects from the template. Subsequently, the hierarchical aspect-based opinion summarization (HAOS) phase enriches this hierarchy with customers’ opinions to be shown to other potential buyers. To test the feasibility of using deep learning-based BERT techniques with our approach, we created a corpus by gathering information from the top five EC websites for laptops. The experimental results showed that recurrent neural network (RNN) achieved better results (77.4% and 82.6% in terms of F1-measure for the first and second phases, respectively) than the convolutional neural network (CNN) and the support vector machine (SVM) technique.


Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 639
Author(s):  
Chen Ma ◽  
Haifei Dang ◽  
Jun Du ◽  
Pengfei He ◽  
Minbo Jiang ◽  
...  

This paper proposes a novel metal additive manufacturing process, which is a composition of gas tungsten arc (GTA) and droplet deposition manufacturing (DDM). Due to complex physical metallurgical processes involved, such as droplet impact, spreading, surface pre-melting, etc., defects, including lack of fusion, overflow and discontinuity of deposited layers always occur. To assure the quality of GTA-assisted DDM-ed parts, online monitoring based on visual sensing has been implemented. The current study also focuses on automated defect classification to avoid low efficiency and bias of manual recognition by the way of convolutional neural network-support vector machine (CNN-SVM). The best accuracy of 98.9%, with an execution time of about 12 milliseconds to handle an image, proved our model can be enough to use in real-time feedback control of the process.


Sign in / Sign up

Export Citation Format

Share Document