scholarly journals Impact of COVID-19 Lockdown and Atmospheric Circulation on the Air Quality in Wuhan During Early 2020

2021 ◽  
Vol 299 ◽  
pp. 02011
Author(s):  
Youyong Xie ◽  
Xiefei Zhi

Previous studies indicated that the air quality was improved in Wuhan during COVID-19 lockdown. However, the impact of atmospheric general circulation on the changes of air quality has not been taken into account. The present study aims to discuss the improvement of air quality in Wuhan and its possible reasons during COVID-19 lockdown. The results showed that all air pollutants except O3 decreased in Wuhan during early 2020. The occurrence days of A, C, W and NW types’ circulation pattern during early 2020 are more than those during the same period of 1979-2020. The occurrence days of SW type’s circulation pattern is slightly less than those during early 1979-2020. With more occurrence days of these dominant atmospheric circulation patterns, the number of polluted days could rise in Wuhan during early 2020. Nevertheless, this scenario didn’t occur. The COVID-19 lockdown did improve the air quality in Wuhan during early 2020.

2014 ◽  
Vol 14 (5) ◽  
pp. 5495-5533 ◽  
Author(s):  
P. Salvador ◽  
S. Alonso ◽  
J. Pey ◽  
B. Artíñano ◽  
J. J. de Bustos ◽  
...  

Abstract. The occurrence of African dust outbreaks over the western Mediterranean basin were identified on an 11 year period (2001–2011). PM10 daily data from nine regional background air quality monitoring sites across the study area were compiled and the net dust load transported during each event was estimated. Then, the main atmospheric circulation patterns causing the transport of African air masses, were characterized by mean of an objective classification methodology of atmospheric variables fields. Next, the potential source areas of mineral dust, associated to each circulation pattern were identified by trajectory statistical methods. Finally, an impact index was calculated to estimate the incidence of the African dust outbreaks produced during each circulation pattern, on the levels of dust load in PM10 concentrations recorded in the different regions. Our results indicate that the values of the impact index and the areas affected by African dust, strongly depended on the atmospheric circulation pattern. Four circulation types were obtained by the classification procedure. Two of them (CT-1 and CT-4) occurred predominantly during the warm season, bringing dust from areas of Algeria, Tunisia, Western Sahara, western Libya and Mauritania. African dust outbreaks produced during the CT-4 were the most frequent across the period of study, generating the highest impact index over southern, central and eastern regions of the Iberian Peninsula as well as over the Balearic Islands. Conversely, the events caused by the CT-1 encompassed the highest impact index over the western areas of the Iberian Peninsula. The two remaining circulation types (CT-2 and CT-3) were more frequently observed during the spring season. The prevailing flows generated by these two atmospheric circulation patterns, carried mineral dust from areas of Algeria, Tunisia and Western Sahara, giving rise to higher values of the impact index from eastern to western areas of the western Mediterranean basin.


2022 ◽  
pp. 1-41

Abstract The interannual variation of springtime extreme precipitation (SEP) days in North China (NC) and their reliance on atmospheric circulation patterns are studied by using the continuous daily record of 396 rain gauges and the fifth generation of the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2019. The SEP days are defined as the days when at least 10% of rain gauges in NC record daily precipitation no less than 10.5 mm. Results show that the number of SEP days shows large interannual variability but no significant trend in the study period. Using the objective classification method of the obliquely rotated principal analysis in T-mode, we classify the atmospheric circulation into five different patterns based on the geopotential height at 700 hPa. Three circulation patterns all have fronts and are associated with strong southerly wind, leading to 88% of SEP days in NC. The strong southerly wind may provide moisture and dynamic forcing for the frontal precipitation. The interannual variation of SEP days is related with the number of the three above-mentioned dominant circulation patterns. Further analysis shows that the West Pacific pattern could be one of the possible climate variability modes related to SEP days. This study reveals that the daily circulation pattern may be the linkage between SEP days and climate variability modes in NC.


2021 ◽  
Vol 34 (3) ◽  
pp. 1005-1021
Author(s):  
Gareth J. Marshall

AbstractThe Arctic continues to warm at a much faster rate than the global average. One process contributing to “Arctic amplification” involves changes in low-frequency macroscale atmospheric circulation patterns and their consequent influence on regional climate. Here, using ERA5 data, we examine decadal changes in the impact of seven such patterns on winter near-surface temperature (SAT) and precipitation (PPN) in northern Russia and calculate the temporal consistency of any statistically significant relationships. We demonstrate that the 40-yr climatology hides considerable decadal variability in the spatial extent of such circulation pattern–climate relationships across the region, with few areas where their temporal consistency exceeds 60%. This is primarily a response to the pronounced decadal expansion/contraction and/or mobility of the circulation patterns’ centers of action. The North Atlantic Oscillation (NAO) is the dominant pattern (having the highest temporal consistency) affecting SAT west of the Urals. Farther east, the Scandinavian (SCA), Polar/Eurasian (POL), and West Pacific patterns are successively the dominant pattern influencing SAT across the West Siberian Plains, Central Siberian Plateau, and mountains of Far East Siberia, respectively. From west to east, the SCA, POL, and Pacific–North American patterns exert the most consistent decadal influence on PPN. The only temporally invariant significant decadal relationships occur between the NAO and SAT and the SCA and PPN in small areas of the North European Plain.


2020 ◽  
Vol 162 (2) ◽  
pp. 741-759
Author(s):  
Gareth J. Marshall ◽  
Kirsti Jylhä ◽  
Sonja Kivinen ◽  
Mikko Laapas ◽  
Anita Verpe Dyrrdal

Abstract Extreme precipitation events (EPEs) have a major impact across Arctic Fennoscandia (AF). Here we examine the spatial variability of seasonal 50-year trends in three EPEs across AF for 1968–2017, using daily precipitation data from 46 meteorological stations, and analyse how these are related to contemporaneous changes in the principal atmospheric circulation patterns that impact AF climate. Positive trends in seasonal wet-day precipitation (PRCPTOT) are widespread across AF in all seasons except autumn. Spring (autumn) has the most widespread negative (positive) trends in consecutive dry days (CDD). There is less seasonal dependence for trends in consecutive wet days (CWDs), but the majority of the stations show an increase. Clear seasonal differences in the circulation pattern that exerted most influence on these AF EPE trends exist. In spring, PRCPTOT and CDD are most affected by the Scandinavian pattern at more than half the stations while it also has a marked influence on CWD. The East Atlantic/Western Russia pattern generally has the greatest influence on the most station EPE trends in summer and autumn, yet has no effect during either spring or winter. In winter, the dominant circulation pattern across AF varies more between the different EPEs, with the North Atlantic Oscillation, Polar/Eurasia and East Atlantic patterns all exerting a major influence. There are distinct geographical distributions to the dominant pattern affecting particular EPEs in some seasons, especially winter, while in others there is no discernible spatial relationship.


2019 ◽  
Vol 16 ◽  
pp. 69-73
Author(s):  
Annika Brieber ◽  
Andreas Hoy

Abstract. The cumulative occurrence of heavy precipitation and flood events during recent years in various Central European locations emphasises the urgent need to improve extreme rainfall observations and forecasts. Precipitation gauges based on a weighing system allow the recording of intense short-term precipitation events with a very high temporal resolution (down to 1 min). In this study, observational data that were collected during the period 2000 to 2016 for 126 stations of two corresponding measuring networks in the Central German state of Hesse were investigated for the first time to answer the following questions: (1) Are the recorded high-resolution precipitation data plausible and comparable between both networks? (2) Which atmospheric circulation patterns were specifically prone to produce short-term intense precipitation events? Although the two networks are equipped with the same measuring technology, systematic differences concerning their maximum 1 min precipitation amounts occur, which may be explained by different instrumental software settings. We could minimise those discrepancies by accumulating the existing 1 min data to 15 min. Subsequently, the 15 min daily maximum values and accumulated daily sums were analysed regarding the impact of large-scale atmospheric circulation patterns, based on the well-known “Großwetterlagen” classification. We identified a clear connection between atmospheric circulation and heavy precipitation over Hesse, while indicating some differences between daily (24 h) and sub-daily (15 min) events. High daily precipitation sums often relate to westerlies and central cyclones, while intense short-term events are frequently generated by warm-humid continental air from southern and eastern Europe as well as trough conditions, where the trough's core is found west of the study area. Our results underline the importance of expanding and enhancing high-resolution precipitation observations in Germany as well as other countries.


2015 ◽  
Vol 6 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Maria Grundstrom ◽  
Lin Tang ◽  
Mattias Hallquist ◽  
Hung Nguyen ◽  
Deliang Chen ◽  
...  

2015 ◽  
Vol 28 (5) ◽  
pp. 2063-2079 ◽  
Author(s):  
Paul C. Loikith ◽  
Anthony J. Broccoli

Abstract Circulation patterns associated with extreme temperature days over North America, as simulated by a suite of climate models, are compared with those obtained from observations. The authors analyze 17 coupled atmosphere–ocean general circulation models contributing to the fifth phase of the Coupled Model Intercomparison Project. Circulation patterns are defined as composites of anomalies in sea level pressure and 500-hPa geopotential height concurrent with days in the tails of temperature distribution. Several metrics used to systematically describe circulation patterns associated with extreme temperature days are applied to both the observed and model-simulated data. Additionally, self-organizing maps are employed as a means of comparing observed and model-simulated circulation patterns across the North American domain. In general, the multimodel ensemble resembles the observed patterns well, especially in areas removed from complex geographic features (e.g., mountains and coastlines). Individual model results vary; however, the majority of models capture the major features observed. The multimodel ensemble captures several key features, including regional variations in the strength and orientation of atmospheric circulation patterns associated with extreme temperatures, both near the surface and aloft, as well as variations with latitude and season. The results from this work suggest that these models can be used to comprehensively examine the role that changes in atmospheric circulation will play in projected changes in temperature extremes because of future anthropogenic climate warming.


Sign in / Sign up

Export Citation Format

Share Document