scholarly journals Decadal Variability in the Impact of Atmospheric Circulation Patterns on the Winter Climate of Northern Russia

2021 ◽  
Vol 34 (3) ◽  
pp. 1005-1021
Author(s):  
Gareth J. Marshall

AbstractThe Arctic continues to warm at a much faster rate than the global average. One process contributing to “Arctic amplification” involves changes in low-frequency macroscale atmospheric circulation patterns and their consequent influence on regional climate. Here, using ERA5 data, we examine decadal changes in the impact of seven such patterns on winter near-surface temperature (SAT) and precipitation (PPN) in northern Russia and calculate the temporal consistency of any statistically significant relationships. We demonstrate that the 40-yr climatology hides considerable decadal variability in the spatial extent of such circulation pattern–climate relationships across the region, with few areas where their temporal consistency exceeds 60%. This is primarily a response to the pronounced decadal expansion/contraction and/or mobility of the circulation patterns’ centers of action. The North Atlantic Oscillation (NAO) is the dominant pattern (having the highest temporal consistency) affecting SAT west of the Urals. Farther east, the Scandinavian (SCA), Polar/Eurasian (POL), and West Pacific patterns are successively the dominant pattern influencing SAT across the West Siberian Plains, Central Siberian Plateau, and mountains of Far East Siberia, respectively. From west to east, the SCA, POL, and Pacific–North American patterns exert the most consistent decadal influence on PPN. The only temporally invariant significant decadal relationships occur between the NAO and SAT and the SCA and PPN in small areas of the North European Plain.

2021 ◽  
Author(s):  
Leonardo Rydin Gorjão ◽  
Keno Riechers ◽  
Forough Hassanibesheli ◽  
Dirk Witthaut ◽  
Pedro G. Lind ◽  
...  

Abstract. Dansgaard–Oeschger (DO) events are sudden climatic shifts from cold to substantially milder conditions in the arctic region that occurred during previous glacial intervals. They can be most clearly identified in paleoclimate records of δ18O and dust concentrations from Greenland ice cores, which serve as proxies for temperature and atmospheric circulation patterns, respectively. The existence of stadial (cold) and interstadial (milder) phases is typically attributed to a bistability of the North Atlantic climate system allowing for rapid transitions from the first to the latter and a more gentle yet still fairly abrupt reverse shift from the latter to the first. However, the underlying physical mechanisms causing these transitions remain debated. Here, we conduct a data-driven analysis of the Greenland temperature and atmospheric circulation proxies under the purview of stochastic processes. Based on the Kramers–Moyal equation we present a one-dimensional and two-dimensional derivation of the proxies' drift and diffusion terms, which unravels the features of the climate system's stability landscape. Our results show that: (1) in contrast to common assumptions, the δ18O proxy results from a monostable process, and transitions occur in the record only due to the coupling to other variables; (2) conditioned on δ18O the dust concentrations exhibit both mono and bistable states, transitioning between them via a double-fold bifurcation; (3) the δ18O record is discontinuous in nature, and mathematically requires an interpretation beyond the classical Langevin equation. These findings can help understand candidate mechanisms underlying these archetypal examples of abrupt climate changes.


Geografie ◽  
2017 ◽  
Vol 122 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Dragan D. Milošević ◽  
Stevan M. Savić ◽  
Uglješa Stankov ◽  
Igor Žiberna ◽  
Milana M. Pantelić ◽  
...  

This paper examines temporal and spatial patterns of annual and seasonal maximum temperatures (Tmax) in Slovenia and their relationship with atmospheric circulation patterns. A significant increase in maximum temperature (Tmax; from 0.3°C to 0.5°C·decade-1) was observed throughout the country at the annual scale in the period 1963–2014. Significant positive trends are observed on all stations in summer (from 0.4°C to 0.7°C·decade-1) and spring (from 0.4°C to 0.6°C·decade-1). The results indicate significant correlations between the mean annual maximum temperature (Tmax) and the East Atlantic Oscillation (EA) (from 0.5 to 0.7), the Arctic Oscillation (AO) (from 0.4 to 0.7) and the Scandinavian Oscillation (SCAND) (from −0.3 to −0.4) throughout the country. A significant EA influence is observed in all seasons, while the AO influence is noticed in winter and spring, SCAND in spring and summer, the North Atlantic Oscillation (NAO) and the Mediterranean Oscillation (MO) in winter, the East Atlantic/Western Russia Oscillation (EA/WR) in summer and the El Nino Southern Oscillation (ENSO) in autumn.


2021 ◽  
Vol 299 ◽  
pp. 02011
Author(s):  
Youyong Xie ◽  
Xiefei Zhi

Previous studies indicated that the air quality was improved in Wuhan during COVID-19 lockdown. However, the impact of atmospheric general circulation on the changes of air quality has not been taken into account. The present study aims to discuss the improvement of air quality in Wuhan and its possible reasons during COVID-19 lockdown. The results showed that all air pollutants except O3 decreased in Wuhan during early 2020. The occurrence days of A, C, W and NW types’ circulation pattern during early 2020 are more than those during the same period of 1979-2020. The occurrence days of SW type’s circulation pattern is slightly less than those during early 1979-2020. With more occurrence days of these dominant atmospheric circulation patterns, the number of polluted days could rise in Wuhan during early 2020. Nevertheless, this scenario didn’t occur. The COVID-19 lockdown did improve the air quality in Wuhan during early 2020.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Pascal Yiou ◽  
Julien Cattiaux ◽  
Aurélien Ribes ◽  
Robert Vautard ◽  
Mathieu Vrac

A few types of extreme climate events in the North Atlantic region, such as heatwaves, cold spells, or high cumulated precipitation, are connected to the recurrence of atmospheric circulation patterns. Understanding those extreme events requires assessing long-term trends of the atmospheric circulation. This paper presents a set of diagnostics of the intra- and interannual recurrence of atmospheric patterns. Those diagnostics are devised to detect trends in the stability of the circulation and the return period of atmospheric patterns. We detect significant emerging trends in the winter circulation, pointing towards a potential increased predictability. No such signal seems to emerge in the summer. We find that the winter trends in the dominating atmospheric patterns and their recurrences do not depend of the patterns themselves.


2006 ◽  
Vol 30 (2) ◽  
pp. 143-174 ◽  
Author(s):  
D. G. Kingston ◽  
D. M. Lawler ◽  
G. R. McGregor

This paper evaluates the relationships between atmospheric circulation, climate and streamflow in the northern North Atlantic region over the last century and especially the last 50 years. Improved understanding of climatic influences on streamflow is vital given the great importance of fluvial processes to natural systems and water resources, especially in the light of recent and predicted climate change. The main focus lies with climatic and hydrologic implications of the major circulation patterns in the northern North Atlantic, namely the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). The studies reviewed here reveal key relationships between circulation, climate and streamflow across the northern North Atlantic, allowing the construction of a simple conceptual model for this system. Generally positive NAO/AO-streamflow relationships are found in northwest Europe and northeast USA, with both positive and negative NAO/AO-streamflow linkages apparent for parts of eastern Canada. To help promote a better understanding of the system, several research gaps are identified and critically examined, including: the spatial scope and coverage of investigations; data quality and homogeneity; appropriateness of analytical techniques; and the need for greater knowledge and technique sharing between hydrology and climatology, particularly regarding the rigorous characterization of atmospheric circulation patterns. Among these, the development of seasonally varying, or mobile, NAO indices, to capture variations in subseasonal, seasonal and annual movements in the centres of action, and the need to develop analyses of more hydrologically meaningful climate variables beyond conventional time averaged statistics, are deemed particularly important.


2017 ◽  
Author(s):  
Lars Norin ◽  
Abhay Devasthale ◽  
Tristan S. L'Ecuyer

Abstract. For a high latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studied focused on the sensitivity of snowfall to weather states over Sweden. In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anti-cyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially-interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states. In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that even though the heaviest snowfall intensities occur during conditions with winds from the southwest, the largest contribution to snowfall accumulation arrives from winds from the southeast. Large differences in snowfall due to variations in the North Atlantic oscillation are shown as well as a strong effect of cyclonic and anti-cyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.


2021 ◽  
Author(s):  
Manu Anna Thomas ◽  
Abhay Devasthale ◽  
Tiina Nygård

Abstract. The transport and distribution of short-lived climate forcers in the Arctic is influenced by the prevailing atmospheric circulation patterns. Understanding the coupling between pollutant distribution and dominant atmospheric circulation types is therefore important, not least to understand the processes governing the local processing of pollutants in the Arctic, but also to test the fidelity of chemistry transport models to simulate the transport from the southerly latitudes. Here, we use a combination of satellite based and reanalysis datasets spanning over 12 years (2007–2018) and investigate the concentrations of NO2, O3, CO and aerosols and their co-variability during 20 different atmospheric circulation types in the spring season (March, April and May) over the Arctic. We carried out a Self-Organizing Maps analysis of MSLP to derive these circulation types. Although almost all pollutants investigated here show statistically significant sensitivity to the circulation types, NO2 exhibits the strongest sensitivity among them. The circulation types with low-pressure systems located over the northeast Atlantic show a clear enhancement of NO2 and AOD in the European Arctic. The O3 concentrations are, however, decreased. The free tropospheric CO is increased over the Arctic during such events. The circulation types with atmospheric blocking over Greenland and northern Scandinavia show the opposite signal in which the NO2 concentrations are decreased and AODs are smaller than the climatological values. The O3 concentrations are, however, increased and the free tropospheric CO decreased during such events. The study provides the most comprehensive assessment so far of the sensitivity of springtime pollutant distribution to the atmospheric circulation types in the Arctic and also provides an observational basis for the evaluation of chemistry transport models.


Sign in / Sign up

Export Citation Format

Share Document