scholarly journals Study on fracture and seepage characteristics of rock mass with high water pressure caused by unloading

2021 ◽  
Vol 303 ◽  
pp. 01055
Author(s):  
Ma Zhi-Tao ◽  
Cui Yong-Qiang ◽  
Yang Ya-Chao ◽  
Song Dai-Fu

Research on the damage and seepage characteristics of unloading rock with high water pressure can help to further understand the mechanism of water inrush in deep mine and to take effective measures to prevent water inrush. In this paper, the finite element software RFPA2D-Flow was used to study the failure and seepage characteristics of unloading rock coupled with high water pressure and high stress. The effects of different water pressure on the failure of unloading rock and the law of seepage were investigated. The results show that the form of unloading rock failure without water pressure is brittle; however, the failure form of unloading rock with water pressure is obviously ductile failure, and the fracture is mainly concentrated at the bottom of the rock sample with high water pressure. During unloading, the seepage coefficient of rock increased with the increase of unloading amount until sudden jump occurs, and the failure form and permeability law of the rock with different water pressure were basically the same, but the larger the water pressure difference, the smaller the effective unloading capacity is needed when the permeability coefficient suddenly jumps, this shows that the larger the water pressure difference is, the more likely the rock mass will be damaged by water inrush under unloading condition.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhi-tao Ma ◽  
Yong-qiang Cui ◽  
Ke-yu Lu ◽  
Dai-fu Song ◽  
Ya-chao Yang

Research on the damage and seepage characteristics of unloading rock with high water pressure can help to further understand the mechanism of water inrush in deep mine floor and prevent water inrush. This paper used the RFPA2D-flow finite element software to study the failure and seepage characteristics of unloading rock with high water pressure and high stress and comparatively analyzed the failure modes and seepage characteristics of unloading rock with and without water pressure. The effects of different water pressure differences on the failure of unloading rock and the law of seepage were investigated by analyzing the change of acoustic emission and permeability coefficient with stress. The results showed that the unloading rock without water pressure was brittle failure, and the initial damage of the unloading model with water pressure was earlier than that of the model without water pressure and showed greater brittleness, and its cracks first break through at the bottom of the sample with higher osmotic pressure. With the increase in unloading, the permeability of rock increased gradually until it appeared an abrupt change. The failure mode and permeability law of the rock with different water pressure differences were basically the same, but the greater the pressure difference, the smaller the effective unloading capacity when the permeability coefficient changes suddenly, and the greater the possibility of water inrush in the rock.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 134 ◽  
Author(s):  
Weimin Yang ◽  
Zhongdong Fang ◽  
Hao Wang ◽  
Liping Li ◽  
Shaoshuai Shi ◽  
...  

In order to explore the catastrophic evolution process for karst cave water inrush in large buried depth and high water pressure tunnels, a model test system was developed, and a similar fluid–solid coupled material was found. A model of the catastrophic evolution of water inrush was developed based on the Xiema Tunnel, and the experimental section was simulated using the finite element method. By analyzing the interaction between groundwater and the surrounding rocks during tunnel excavation, the law of occurrence of water inrush disaster was summarized. The water inrush process of a karst cave containing high-pressure water was divided into three stages: the production of a water flowing fracture, the expansion of the water flowing fracture, and the connection of the water flowing fracture. The main cause of water inrush in karst caves is the penetration and weakening of high-pressure water on the surrounding rock. This effect is becoming more and more obvious as tunnel excavation progresses. The numerical simulation results showed that the outburst prevention thickness of the surrounding rock is 4.5 m, and that of the model test result is 5 m. Thus, the results of the two methods are relatively close to each other. This work is important for studying the impact of groundwater on underground engineering, and it is of great significance to avoid water inrush in tunnels.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Longjun Dong ◽  
Qiaomu Luo

The rock mass of deep underground engineering is in the complex geological environment of high stress, high temperature, and high water pressure. In the process of deep mining and underground space development, the fault-slip seismic source may cause engineering accidents with strong destructive capacity. An in-depth study of fault slip characteristics is very important in the engineering disaster prevention and control. In this paper, a slip model was established based on the finite element software ABAQUS. A total of 20 loading ways are set for various stress and slip, which include the possible slip conditions of fast slip, slow slip, and critical state. By comparing the simulation diagrams and collecting the data of representative grid elements on the loading surface and slip surface, the slip characteristics such as stress heterogeneity under different loads are analyzed. The results show that the increase of slip velocity will make the slip unstable, and the local stress and deformation will become irregular. The spatial stress heterogeneity and the resulting local high working rate will lead to the decrease of the friction strength and the slip weakening. These results can provide some useful suggestions for the research of seismic activities caused by fault slip.


2013 ◽  
Vol 448-453 ◽  
pp. 3901-3907
Author(s):  
Gan Tian

Based on analysis of water inrush coefficients developed and applied in deep coal mining with high water pressure, the author proposes that there are some defects of water inrush coefficients in calculation and application. By simulation experiments on the water resistance properties of the aquiclude in a coal seam floor, the author arrived at the distribution and digital characteristics of residual pressure in the course of high-pressure water rising in the water-resisting floor. The formula for a water inrush coefficient has been further revised.


2017 ◽  
Vol 37 (5) ◽  
pp. 2149-2158 ◽  
Author(s):  
Aénor Pons ◽  
Emilie Béchade ◽  
Jenny Jouin ◽  
Maggy Colas ◽  
Pierre-Marie Geffroy ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yongjian Pan ◽  
Huajun Wang ◽  
Yanlin Zhao ◽  
Qiang Liu ◽  
Shilin Luo

Water inrush and mud outburst are one of the crucial engineering disasters commonly encountered during the construction of many railways and tunnels in karst areas. In this paper, based on fluid dynamics theory and discrete element method, we established a fractured rock mass mud inflow model using particle flow PFC3D numerical software, simulated the whole process of fractured rock mass mud inflow, and discussed the effect of particle size and flow velocity on the change of pressure gradient. The numerical simulation results show that the movement of particles at the corner of the wall when the water pressure is first applied occurs similar to the vortex phenomenon, with the running time increases, the flow direction of particles changes, the vortex phenomenon disappears, and the flow direction of particles at the corner points to the fracture; in the initial stage, the slope of the particle flows rate curves increases in time, and the quadratic function is used for fitting. After the percolation velocity of particles reaches stability, the slope of the curve remains constant, and the primary function is used for fitting; the particle flow rate and pressure gradient are influenced by a variety of factors, and they approximately satisfy the exponential function of an “S” curve.


Sign in / Sign up

Export Citation Format

Share Document