scholarly journals Experimental Investigation of Bearing Capacity of Screw Piles and Excess Porewater Pressure in Soft Clay under Static Axial Loading

2021 ◽  
Vol 318 ◽  
pp. 01001
Author(s):  
Mahdi O. Karkush ◽  
Asaad A. Hussein

In this study, the behavior of screw piles models with continuous helix was studied by conducting laboratory experimental tests on a single screw pile that has several aspect ratios (L/D) under the influence of static axial compression loads. The screw piles were inserted in a soft soil that has a unit weight of 18.72 kN/m3 and moisture content of 30.19%. Also, the soil has a liquid limit of 55% and a plasticity index of 32%. A physical laboratory model was designed to investigate the ultimate compression capacity of the screw pile and measure the generated porewater pressure during the loading process. The bedding soil was prepared according to the field unit weight and moisture content and the failure load was assumed corresponding to a settlement equals 20% of helix diameter. The ultimate compression capacity of screw piles higher than the ultimate capacity of ordinary piles and the ultimate compression capacity increases with decreasing the aspect ratio. The ultimate bearing capacity of the flexible screw pile (L/D<20) is greater than the ordinary pile by 59.5% and with the rigid screw pile (L/D>20), the ultimate bearing capacity could reach 250% compared with the ordinary pile. Also, the estimated ultimate compression capacity of flexible screw piles well agreed with those measured experimentally, but a large difference was noted for rigid screw piles.

Author(s):  
Mahdi Karkush ◽  
◽  
Anwar Jabbar ◽  

One of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of 5.5 kPa and improved by several patterns of stone columns (single, two linear, triangular, square, and quadrilateral). The stone column has a length of 180 mm and a diameter of 30 mm. The material of the stone column is poorly graded sand has an angle of internal friction (48.5°) at a relative density of 65%. The results indicated a significant increase in the ultimate bearing capacity of soft soil when treated with floating stone columns despite the small ratio of area replacement and reducing the excess porewater pressure and settlement. Also, the ultimate bearing capacity of soil calculated from experimental work is compared with the corresponding values obtained from the proposed equations in the previous studies to evaluate the validity of using such equations.


1993 ◽  
Vol 30 (3) ◽  
pp. 545-549 ◽  
Author(s):  
M.T. Omar ◽  
B.M. Das ◽  
V.K. Puri ◽  
S.C. Yen

Laboratory model test results for the ultimate bearing capacity of strip and square foundations supported by sand reinforced with geogrid layers have been presented. Based on the model test results, the critical depth of reinforcement and the dimensions of the geogrid layers for mobilizing the maximum bearing-capacity ratio have been determined and compared. Key words : bearing capacity, geogrid, model test, reinforced sand, shallow foundation.


Author(s):  
M Zaki ◽  
Wardani SPR ◽  
Muhrozi Muhrozi

<p><em>Construction on soft soil, often creates problems. The Semarang North Ring Bridge and Kali Jajar Bridge are the Recent soft Marine Alluvium zones located in the Pantura area which have very soft soil characteristics with a depth of more than -30.0 meters this has resulted in a very large settlement due to very small grains, flood, rob, pore water pressure increases so that the shear strength of the soil will be small, the compression is large and the permeability coefficient is small so that if the construction load exceeds the critical bearing capacity, the damage to the foundation soil will occur. To get the increase in soil bearing capacity, it can be achieved by changing the properties of the soil from the shear angle (</em>f<em>), cohesion (c) and unit weight (</em>g<em>). The settlement can be reduced by increasing the cavity density from the compression of the soil particles (Wesley, 1977). Soil improvement takes a long time, aiming to increase shear resistance so that it requires a fast time in this case is to use Pre-Fabricated Vertical Drain (Bowles 1981). The results of the analysis of the pattern of decline and the effectiveness of the use of PVD (pre-fabricated vertical drain) at the Oprit Bridge in the two research locations have the same decrease in the range of the same heap height at (H = 4 meters) there is a decrease of 117.53 cm at 64 months on the bridge. Kali Jajar (STA. 3 + 200) and there was a decrease of 268.94 cm at 37 months at the Semarang North Ring Bridge</em></p>


2020 ◽  
Vol 61 (HTCS6) ◽  
pp. 116-122
Author(s):  
Son Truong Bui ◽  
Nu Thi Nguyen ◽  
Tho Duc Pham ◽  
Duong Thanh Nguyen ◽  

Consolidation parameters of soft soil play an important role in calculating settlement and soft soil improvement by vertical drainage method (distance, quantity, treatment time). In this study, using oedometer tests, consolidation parameters of some soft soils in the North Central coastal region, Vietnam are clarified. The research results show that the compression index Cc has a strong relationship with the natural water content, liquid limit, dry unit weight, and void ratio of the soil. The consolidation coefficient significantly depends on the applied pressure level, at the over-consolidation stage (normal stress is less than pre-consolidation pressure), the consolidation coefficient is high. By contrast, at the normal consolidation stage (normal stress is greater than pre-consolidation pressure), the coefficient of consolidation is small. The pre-consolidation pressure of soil changes with the distribution depth.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Thi Nu NGUYEN ◽  
Thanh Duong NGUYEN ◽  
Truong Son BUI

Soft marine soil deposit is distributed under the sea with many special properties. This type ofsoil is rarely researched in Vietnam because of the difficult geotechnical investigation under the sea level.In this paper, the experimental laboratories were performed to investigate the geotechnical properties ofsoft marine soil at Chan May port, Vietnam. The field investigation results indicate that the thickness ofsoft soil varies from a few meters to more than ten meters. Soft soil has a high value of water content,void ratio, and compressibility and a low value of shear strength. The compression index has a goodrelationship with water content, liquid limit, and dry unit weight. The unit weight, shear strength, and preconsolidationpressure increase with the increase of depth. These results show that the soil in the studyarea is unfavorable for construction activities.


2020 ◽  
Vol 28 (3) ◽  
pp. 378
Author(s):  
Rasdinanta Tarigan

Buildings that stand on soft soil usually use a pile foundation. Testing the ultimate bearing capacity of pile foundations in the field is a Pile Driving Analyzer (PDA) tool. Besides being inexpensive to test, the results can also be known quickly. This tool is supported by a software called CAPWAP (CAse Pile Wave Analysis Program).In this paper, a performance comparison of the Pile Driving Analyzer (PDA) and CAPWAP (CAse Pile Wave Analysis Program) software will be presented in producing the ultimate bearing capacity of pile foundations. The results of both will be analyzed in such a way that the causes of the differences in the performance of the Pile Driving Analyzer (PDA) and the CAPWAP software are known.The results obtained show that the performance of the Pile Driving Analyzer (PDA) tool will not be optimal if the energy transferred to the pile foundation is too small. The energy given by the hammer when struck must be in the range of 1% - 2%, if it is smaller then the performance of the tool in producing the ultimate bearing capacity will not be representative. The difference in the ultimate bearing capacity between the PDA device and the CAPWAP software for energy transferred to the pile foundation (EMX) under the specified energy standard is 10.71% - 33.23%. Meanwhile, energy that meets the specified standards has a value between 0.24% - 1.80%.


2018 ◽  
Vol 175 ◽  
pp. 04038
Author(s):  
XiaoBei Yuana ◽  
JunCai Li ◽  
Peng Zhang ◽  
YiLi Dai ◽  
KaiJun Rui

Based on the case Nanjing Metro Line 4, the method Principal Component Analysis (PCA) was used to study the influence of ground settlement by shield tunnel construction on different geomorphology units. Correlation analysis and weighted least square method (WLS) were applied for variables selection and to obtain their relationship with settlement. 5-7 principal components could be used to present the initial 19- 21 variables after decreasing the dimensions of data. For the floodplain of Yangtze River, variable parameters that highly linearly dependent on settlement were depth of tunnel, distance between the roof of tunnel and the bottom of soft soil layer, thickness of soft soil, compression modulus of soil that tunnel passed through and speed of the cutter head. For the Qinhuai ancient channel, variable parameters were Poisson's ratio, porosities, moisture content, unit weight, cohesion, internal friction angle, compression modulus of soil that tunnel passed through, advancing speed, earth chamber pressure. For the terrace of Yangtze River, variable parameters were cohesion, porosities, moisture content, Poisson's ratio, compression modulus and unit weight of soil. In addition, for the geomorphology unit with col landform, variable parameters were different. Residuals of regression formula are small, which will have certain reference value in practical engineering.


2021 ◽  
Vol 11 (21) ◽  
pp. 10317
Author(s):  
Mahmood Ahmad ◽  
Feezan Ahmad ◽  
Piotr Wróblewski ◽  
Ramez A. Al-Mansob ◽  
Piotr Olczak ◽  
...  

This study examines the potential of the soft computing technique—namely, Gaussian process regression (GPR), to predict the ultimate bearing capacity (UBC) of cohesionless soils beneath shallow foundations. The inputs of the model are width of footing (B), depth of footing (D), footing geometry (L/B), unit weight of sand (γ), and internal friction angle (ϕ). The results of the present model were compared with those obtained by two theoretical approaches reported in the literature. The statistical evaluation of results shows that the presently applied paradigm is better than the theoretical approaches and is competing well for the prediction of UBC (qu). This study shows that the developed GPR is a robust model for the qu prediction of shallow foundations on cohesionless soil. Sensitivity analysis was also carried out to determine the effect of each input parameter.


2018 ◽  
Vol 1 (2) ◽  
pp. 94-99
Author(s):  
Muhammad O Yunus

The pile foundation is one of the deep foundation types commonly used to support building loads when hard soil layers are deeply located. To determine the ultimate bearing capacity of a pile foundation of the load test results, there are several methods commonly used to interpretation test results such as Davisson method, Mazurkiewich method, Chin method, Buttler Hoy method and De Beer method. The aim of this study was to determine the characteristics of soft soil and bakau piles used in the study and to analyze the size of the bearing capacity ultimate of pile foundation that is modeled on a small scale in the laboratory. From the test results of material characteristics of the soil used is organic clay type with medium plasticity with specific gravity 2.75, liquid limit, LL = 50.36% and plasticity index, PI = 13.2%. While the results of testing the characteristics of bakau piles obtained average water content of 21.58%, tensile strength of 18.51 MPa, compressive strength of parallel fiber 23.75 MPa and perpendicular fiber 14.10 MPa, bending strength 106, 22 MPa, and strong split 29.91 MPa. From the result of loading test of the foundation model in the laboratory, it is found that the ultimate bearing capacity of the model without foundation is 41.00 kN with the ultimate settlement of 14.00 mm, the model of the 20 cm long bakau piles foundation is 52.00 kN with the ultimate settlement of 13.00 mm, the foundation model a 30 cm long bakau piles foundation of 54.00 kN with a 10.00 mm ultimate settlement, a 40 cm long bakau piles foundation model of 56.00 kN with an ultimate settlement of 8.50 mm.


Sign in / Sign up

Export Citation Format

Share Document