Experimental and numerical thermal analysis of open-cell metal foams developed through a topological optimization and 3D printing process

2018 ◽  
Vol 83 (1) ◽  
pp. 10904 ◽  
Author(s):  
Abdelatif Merabtine ◽  
Nicolas Gardan ◽  
Julien Gardan ◽  
Houssem Badreddine ◽  
Chuan Zhang ◽  
...  

This study focuses on the thermal analysis and comparing a lattice model and an optimized model of open-cell metal foams manufactured thanks to a metal casting process. The topological optimization defines the complex geometry through thermal criteria and a plaster mold reproduces it in 3D printing to be used in casting. The study of the thermal behavior conducted on the two open foam metal structures is performed based on several measurements, as well as numerical simulations. It is observed that the optimized metal foam presented less and non-homogenous local temperature than the lattice model with the gap of about 10 °C between both models. The pore size and porosity significantly affect the heat transfer through the metal foam. The comparison between numerical simulations and experimental results regarding the temperature fields shows a good agreement allowing the validation of the developed three-dimensional model based on the finite element method.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3566
Author(s):  
Youngwoo Kim ◽  
Chanhee Moon ◽  
Omid Nematollahi ◽  
Hyun Dong Kim ◽  
Kyung Chun Kim

Open-cell metal foams are porous medium for thermo-fluidic systems. However, their complex geometry makes it difficult to perform time-resolved (TR) measurements inside them. In this study, a TR particle image velocimetry (PIV) method is introduced for use inside open-cell metal foam structures. Stereolithography 3D printing methods and conventional post-processing methods cannot be applied to metal foam structures; therefore, PolyJet 3D printing and post-processing methods were employed to fabricate a transparent metal foam replica. The key to obtaining acceptable transparency in this method is the complete removal of the support material from the printing surfaces. The flow characteristics inside a 10-pore-per-inch (PPI) metal foam were analyzed in which porosity is 0.92 while laminar flow condition is applied to inlet. The flow inside the foam replica is randomly divided and combined by the interconnected pore network. Robust crosswise motion occurs inside foam with approximately 23% bulk speed. Strong influence on transverse motion by metal foam is evident. In addition, span-wise vorticity evolution is similar to the integral time length scale of the stream-wise center plane. The span-wise vorticity fluctuation through the foam arrangement is presented. It is believed that this turbulent characteristic is caused by the interaction of jets that have different flow directions inside the metal foam structure. The finite-time Lyapunov exponent method is employed to visualize the vortex ridges. Fluctuating attracting and repelling material lines are expected to enhance the heat and mass transfer. The results presented in this study could be useful for understanding the flow characteristics inside metal foams.


Author(s):  
Satish Sharma ◽  
Nassif E. Rayess ◽  
Nihad Dukhan

The damping and basic dynamic properties of a novel type of multifunctional hybrid material known as Metal Foam-Polymer Composite are investigated. This material is obtained by injection molding a thermoplastic polymer through an open cell Aluminum Foam, in essence creating two contiguous morphologies; an Aluminum Foam interconnected “skeleton” with the open pores filled with a similarly interconnected polymer substructure. This coexistence of both materials allows each to contribute its salient properties (e.g. the plastics contributing surface toughness and the metal foams contributing thermal stability). Basic damping testing results are presented for various Aluminum Foam porosities and pore sizes as well as for three types of polymers. A basic mathematical model of the damping is also presented. The integrity of the interface between the Aluminum Foam and the Polymer is discussed in terms of its effect on the overall material damping.


Author(s):  
Thiago Piazera de Carvalho ◽  
Hervé P. Morvan ◽  
David Hargreaves

In aero engines, the oil and air interaction within bearing chambers creates a complex two-phase flow. Since most aero engines use a close-loop oil system and releasing oil out is not acceptable, oil-air separation is essential. The oil originates from the engine transmission, the majority of which is scavenged out from the oil pump. The remainder exits via the air vents, where it goes to an air oil separator called a breather. In metal-foam-style breathers separation occurs by two physical processes. Firstly the largest droplets are centrifuged against the separator walls. Secondly, smaller droplets, which tend to follow the main air path, pass through the metal foam where they ideally should impact and coalesce on the material filaments and drift radially outwards, by the action of centrifugal forces. Although these devices have high separation efficiency, it is important to understand how these systems work to continue to improve separation and droplet capture. One approach to evaluate separation effectiveness is by means of Computational Fluid Dynamics. Numerical studies on breathers are quite scarce and have always employed simplified porous media approaches where a momentum sink is added into the momentum equations in order to account for the viscous and/or inertial losses due to the porous zone [1]. Furthermore, there have been no attempts that the authors know of to model the oil flow inside the porous medium of such devices. Normally, breathers employ a high porosity open-cell metal foam as the porous medium. The aim of this study is to perform a pore-level numerical simulation on a representative elementary volume (REV) of the metal foam with the purpose of determining its transport properties. The pore scale topology is represented firstly by an idealized geometry, namely the Weaire-Phelan cell [2]. The pressure drop and permeability are determined by the solution of the Navier-Stokes equations. Additionally, structural properties such as porosity, specific surface area and pore diameter are calculated. The same procedure is then applied to a 3D digital representation of a metallic foam sample generated by X-ray tomography scans [3]. Both geometries are compared against each other and experimental data for validation. Preliminary simulations with the X-ray scanned model have tended to under predict the pressure drop when compared to in-house experimental data. Additionally, the few existing studies on flow in metal foams have tended to consider laminar flow; this is not the case here and this also raises the question that Reynolds-averaged turbulence models might not be well suited to flows at such small scales, which this paper considers.


Materials ◽  
2016 ◽  
Vol 9 (6) ◽  
pp. 409 ◽  
Author(s):  
Sven De Schampheleire ◽  
Kathleen De Kerpel ◽  
Bernd Ameel ◽  
Peter De Jaeger ◽  
Ozer Bagci ◽  
...  

2019 ◽  
Vol 9 (8) ◽  
pp. 861-871
Author(s):  
Milad Saljooghi ◽  
Younes Bakhshan ◽  
Saeid Niazi ◽  
Jamshid Khorshidi

The Conception of thermo-physical properties of porous materials is a challenging task for scientists to conquer. The open cell metal foam increases heat transfer while energy dissipation, dimension and density of them which are constraints for modern technologies significantly reduce. In the present study, the open cell metal foams with four kinds of structures have been investigated numerically and experimentally and the effective thermal conductivity (ETC) of them have been extracted with using different base fluids such as water, air and paraffin. Also, various metals have been considered copper, aluminum, nickel and silver. Finally, a validated correlation for calculation of ETC of open cell metal foams has been developed which is function of thermal conductivity of fluid and metal, porosity and geometrical properties of pore that is applicable for all open cell metal foam approximately. The results show, good agreements between the modeling results and experimental data.


2004 ◽  
Vol 851 ◽  
Author(s):  
Wassim E. Azzi ◽  
William L. Roberts ◽  
Afsaneh Rabiei

ABSTRACTThe thermodynamic efficiency of the Brayton cycle, upon which all gas turbines (aeropropulsion and power generation) are based on scales with the peak operating temperature. However, the peak temperature is limited by the turbine blades and the temperature they can withstand. The highest temperatures in the gas turbine occur in the combustor region but these temperatures are often too high for turbine blades. As a result, the combustion products must be diluted with relatively cooler air from the compressor to reduce the temperature to tolerable levels for the turbine blades. This research suggests placing a ring of high temperature open cell metal foam between the combustors and turbine sections of the jet engine to mix and average the difference in temperatures resulting from the cooling schemes in combustor cans. Temperature mixing effect was tested using a special setup with the application of an infrared camera and streams of hot and cold air passing through the foam. High speed flow pressure drop around Mach 1 (340 m/s) was done on the same foam samples to understand pressure drop in the compressible regime of air. Infrared imaging showed that open cell metal foams successfully mixed and averaged the difference in temperatures of the hot and cold gasses thus creating a more uniform temperature profile while pressure drop testing revealed that open cell metal foams result in minimal pressure drop at high flows especially when the increase in temperature in taken into consideration.


2014 ◽  
Vol 5 (2) ◽  
pp. 135-143 ◽  
Author(s):  
T. Mankovits ◽  
I. Budai ◽  
G. Balogh ◽  
A. Gábora ◽  
I. Kozma ◽  
...  

The development of an efficient procedure for 3d modeling and finite element simulation of metal foams is one of the greatest challenges for engineer researchers nowadays. Creating 3d CAD model is alone a demanding engineering task due to its extremely complex geometry, and the proper finite element analysis process is still in the center of the research. The increasingly widespread application of the metal foams, e.g. in vehicle and medical industry, requires this knowledge in the design phase. A closed-cell metal foam is studied using different analyzing methods where the aim is to collect information about the composition and geometry (structure) that is satisfactory for the later research. Using statistical methods microscopic, X-ray and surface analyzing studies on the specimens produced according to the concerning standard are evaluated. The main goal of this part of the project is to obtain structural information and to determine the homogeneity or the in-homogeneity property of the metal foam specimens taken from different locations.


2019 ◽  
Vol 12 (3) ◽  
pp. 220-226
Author(s):  
Banjara Kotresha ◽  
Nagarajan Gnanasekaran

Background: The unique structural characteristics of the metal foams, such as low density, large surface area, ability to increase turbulence, and increased heat transfer efficiency, are the advantages associated with thermal applications such as electronics cooling, refrigeration air conditioning, etc. The porous metal foam structures are extensively used to enhance heat transfer. Objective: This paper discusses the numerical simulations of a vertical channel filled with metal foam and wire mesh. The fluid flow and heat transfer phenomena of a wire mesh are compared with two different types of metal foams. Metal foams are made of aluminium and copper while the wire mesh is made of brass. The porosity of the metallic porous structures varies from 0.85 to 0.95. Methods: A Darcy extended Forchheirmer model is considered for solving fluid flow through the porous media while the heat transfer through the porous media is predicted using local thermal non-equilibrium model. Results: Initially, the results obtained using the proposed numerical procedures are compared with experimental results available in the literature. The numerical simulations suggest that the pressure drop increases as the velocity of the fluid increases and decreases as the porosity increases. The heat transfer coefficient and Nusselt number are determined for both the metal foams and the wire mesh. Conclusion: The Nusselt number obtained for wire mesh shows almost 90% of the copper metal foam in the same porosity range. The numerical results suggest that the brass wire mesh porous medium can also be used for enhancement of heat transfer. In this article, patents have been discussed.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Tisha Dixit ◽  
Indranil Ghosh

High porosity open-cell metal foams have captured the interest of thermal industry due to their high surface area density, low weight, and ability to create tortuous mixing of fluid. In this work, application of metal foams as heat sinks has been explored. The foam has been represented as a simple cubic structure and heat transfer from a heated base has been treated analogous to that of solid fins. Based on this model, three performance parameters namely, foam efficiency, overall foam efficiency, and foam effectiveness have been evaluated for metal foam heat sinks. Parametric studies with varying foam length, porosity, pore density, material, and fluid velocity have been conducted. It has been observed that geometric mean of foam efficiency and foam effectiveness can be a useful parameter to exactly determine the optimum foam length. Additionally, the variation in temperature profile of different foams heated from one end has been determined experimentally by cooling these with atmospheric air. The experimental results have been presented for open-cell metal foams (10 and 30 PPI) made of copper/aluminium/Fe–Ni–Cr alloy with porosity in the range of 0.908–0.964.


Author(s):  
Abhay Girija Krishnanunni ◽  
Jayakumar Janardhanan Sarasamma ◽  
Yepuri Giridhara Babu ◽  
Felix Jesuraj

Many researchers have done the CFD simulation of open-cell aluminum metal foams with a unit cell with periodic boundary conditions. However, this does not represent a real life situation, as the foam-fluid interactions cannot be properly modeled. In the present study the simulation is done for metal foam with the more number of foam cells to proximate the conditions close to the actual situations. The CFD simulation of open-cell aluminum metal foams was done using ANSYS FLUENT. The results are obtained by solving the Continuity, Momentum and Energy equations and standard k-ε turbulence model is used for simulation. The boundary conditions applied are same as those applied during the experiments conducted at Heat Transfer Lab, National Aerospace Laboratories, Bangalore. In this study the Aluminum Alloy (Al 6101-T6) metal foam of pore density 10 ppi is used for CFD analysis.


Sign in / Sign up

Export Citation Format

Share Document