Correlation between photoelectrochemical and photoluminescence measurements of Ag-doped ZnO/ITO photoanode

2019 ◽  
Vol 85 (2) ◽  
pp. 20401 ◽  
Author(s):  
Donia Dridi ◽  
Yousra Litaiem ◽  
Mokhtar Karyaoui ◽  
Radhouane Chtourou

Silver-doped zinc oxide (SZO) thin films have been deposited onto indium-doped tin oxide substrates (ITO) using sol–gel spin-coating technique with different Ag doping content (1, 2 and 5% Ag). The effect of silver incorporation on structural, morphological, optical and photoelectrochemical (PEC) properties of the SZO films was investigated. Ag incorporation resulted in an enhanced grain size and thickness of elaborated SZO films. Scanning electron micrographs exhibited a uniform distribution of spherical grains with particle size increment after doping. Band gap energies were found to increase after Ag doping. Photoluminescence (PL) measurements revealed that the energy band gaps of the films were in the UV region. As compared to pure ZnO thin film, the samples are more photoactive, and the film containing 2% Ag yielded the highest photocurrent. A correlation study between PEC and PL measurements of Ag-doped ZnO/ITO photoanode leads to a reverse variation. Charge transfer processes at the ZnO–electrolyte interface were identified by electrochemical impedance spectroscopy.

2013 ◽  
Vol 543 ◽  
pp. 63-67
Author(s):  
Jayabharathi Jayaraman ◽  
Jayamoorthy Karunamoorthy

A sensitive benzimidazole derivative fluorescent sensor for nanoparticulate ZnO has been designed and synthesized. The nanocrystalline ZnO, Ag doped ZnO and Cu doped ZnO have been synthesised by sol-gel method and characterized by powder X-ray diffraction, scanning electron microscopy (SEM) and UV-visible diffuse reflectance, photoluminescence and electrochemical impedance spectroscopies. The synthesized sensor emits fluorescence at 360 nm and this fluorescence is selectively enhanced by nanocrystalline ZnO. This technique is sensitive to detect and estimate ZnO at micro molar level. Impurities such as Ag and Cu do not hamper the sensitivity of this technique significantly. Keywords: Sensor, SEM, EDX, Impedance, Fluorescence


2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


2014 ◽  
Vol 23 (4) ◽  
pp. 047805 ◽  
Author(s):  
Meng-Meng Cao ◽  
Xiao-Ru Zhao ◽  
Li-Bing Duan ◽  
Jin-Ru Liu ◽  
Meng-Meng Guan ◽  
...  

2011 ◽  
Vol 509 (30) ◽  
pp. 7854-7860 ◽  
Author(s):  
A. Esmaielzadeh Kandjani ◽  
M. Farzalipour Tabriz ◽  
O. Mohammad Moradi ◽  
H.R. Rezaeian Mehr ◽  
S. Ahmadi Kandjani ◽  
...  

2000 ◽  
Vol 181-182 ◽  
pp. 109-112 ◽  
Author(s):  
Shinobu Fujihara ◽  
Chikako Sasaki ◽  
Toshio Kimura

Author(s):  
Atef Y. Shenouda ◽  
M. M. S. Sanad

Li2NixFe1−xSiO4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) samples were prepared by sol–gel process. The crystal structure of prepared samples of Li2NixFe1−xSiO4 was characterized by XRD. The different crystallographic parameters such as crystallite size and lattice cell parameters have been calculated. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) investigations were carried out explaining the morphology and function groups of the synthesized samples. Furthermore, electrochemical impedance spectra (EIS) measurements are applied. The obtained results indicated that the highest conductivity is achieved for Li2Ni0.4Fe0.6SiO4 electrode compound. It was observed that Li/Li2Ni0.4Fe0.6SiO4 battery has initial discharge capacity of 164 mAh g−1 at 0.1 C rate. The cycle life performance of all Li2NixFe1−xSiO4 batteries was ranged between 100 and 156 mAh g−1 with coulombic efficiency range between 70.9% and 93.9%.


2010 ◽  
Vol 97-101 ◽  
pp. 1611-1615 ◽  
Author(s):  
Qing Wang ◽  
Xin Li Li ◽  
Wei Nie ◽  
Yong Mei Xia ◽  
Jian Feng Dai

The ZnO/TiO2 composite films were deposited over glass using spin coating technique by sol-gel process. Single-walled carbon nanotubes (SWNTs) were used to modify the ZnO/TiO2 films successfully in this paper. The structure and composition of the ZnO/TiO2 composite and SWNTs doped ZnO/TiO2 composite were characterized by X-ray diffraction (XRD). The morphology of samples was characterized by scanning electron microscopy (SEM). The photocatalytic activity was investigated by photocatalytic degradation of aqueous methyl orange under ultraviolet (UV) radiation. The UV-vis absorption spectra of the ZnO/TiO2 films and SWNTs doped ZnO/TiO2 films in the wavelength region 200~800 nm were obtained. The results indicate that the SWNTs addition can decrease the grain size of ZnO/TiO2, which can enhance the photocatalytic activity. UV-vis absorption spectra of SWNTs-ZnO/TiO2 showed obvious blue shifts compared with ZnO/TiO2. The optimal amount of doping SWNTs is 1% according to this research. The enhanced mechanism of the SWNTs for the photocatalytic activity in ZnO/TiO2 films was analyzed in this article.


2014 ◽  
Vol 50 (8) ◽  
pp. 1-4 ◽  
Author(s):  
Robina Ashraf ◽  
Saira Riaz ◽  
Mahwish Bashir ◽  
Usman Khan ◽  
Shahzad Naseem

Sign in / Sign up

Export Citation Format

Share Document