The Preparation and Photocatalytic Activity of SWNTs Doped ZnO/TiO2 Compound Films

2010 ◽  
Vol 97-101 ◽  
pp. 1611-1615 ◽  
Author(s):  
Qing Wang ◽  
Xin Li Li ◽  
Wei Nie ◽  
Yong Mei Xia ◽  
Jian Feng Dai

The ZnO/TiO2 composite films were deposited over glass using spin coating technique by sol-gel process. Single-walled carbon nanotubes (SWNTs) were used to modify the ZnO/TiO2 films successfully in this paper. The structure and composition of the ZnO/TiO2 composite and SWNTs doped ZnO/TiO2 composite were characterized by X-ray diffraction (XRD). The morphology of samples was characterized by scanning electron microscopy (SEM). The photocatalytic activity was investigated by photocatalytic degradation of aqueous methyl orange under ultraviolet (UV) radiation. The UV-vis absorption spectra of the ZnO/TiO2 films and SWNTs doped ZnO/TiO2 films in the wavelength region 200~800 nm were obtained. The results indicate that the SWNTs addition can decrease the grain size of ZnO/TiO2, which can enhance the photocatalytic activity. UV-vis absorption spectra of SWNTs-ZnO/TiO2 showed obvious blue shifts compared with ZnO/TiO2. The optimal amount of doping SWNTs is 1% according to this research. The enhanced mechanism of the SWNTs for the photocatalytic activity in ZnO/TiO2 films was analyzed in this article.

2018 ◽  
Vol 762 ◽  
pp. 408-412
Author(s):  
Raivis Eglītis ◽  
Gundars Mežinskis

In this work two different hydrosols were used to impregnate a commercially available cotton fabric with anatase nanoparticles to give it photocatalytic activity. To increase the activity, different pre-treatment methods were applied. The nanoparticle size was determined using dynamic light scattering and x-ray diffraction and the fabrics were examined using scanning electron microscopy. Photocatalytic activity was measured using the degradation of methyl-orange while irradiating the samples with UV light. The synthesis method allowed to produce anatase with an average particle size of 32 to 37 nm depending on the synthesis method used.


2004 ◽  
Vol 39 (13) ◽  
pp. 2137-2143 ◽  
Author(s):  
Ryohei Mori ◽  
Masahide Takahashi ◽  
Toshinobu Yoko

2008 ◽  
Vol 23 (S1) ◽  
pp. S36-S41 ◽  
Author(s):  
D. A. A. Santos ◽  
A. D. P. Rocha ◽  
M. A. Macêdo

Nanocrystals of Zn1−xMxO (M=Mn, Co, or Ni) were grown using proteic sol-gel process, and the crystalline phases were identified by X-ray diffraction and Rietveld refinement. The nanocrystals have hexagonal wurtzite structure, with space group P63mc. The insertion of Mn2+ in the place of Zn2+ provoked an increase in the size of the nanocrystals, and the insertion of Co2+ or Ni2+ caused a reduction in the sizes of the nanocrystals, as compared to pure ZnO. This occurred because these three transition metals have very different ionic radii (Co2+=0.58 A˚, Mn2+=0.66 A˚, Ni2+=0.55 A˚, and Zn2+=0.60 A˚).


2012 ◽  
Vol 621 ◽  
pp. 3-7
Author(s):  
Yu Xiong ◽  
Ji Zheng ◽  
Song Lin Li ◽  
Xue Jia Liu ◽  
Lu Liang

Al3+-doped ZnO nano-powder was prepared by sol-gel process, using tin tetrachloride and titanium tetrachloride as starting materials. The crystallinity and purity of the powder were analyzed by X-ray diffraction spectrometer (XRD). And the size and distribution of Al3+-doped ZnO grains were studied using transmission electron microscope (TEM) and scanning electron microscope (SEM). The results showed that the Al3+ was successfully doped into the crystal lattice of tin oxide and that the electric conductivity of Al3+-doped ZnO sample was improved significantly.


2013 ◽  
Vol 12 (02) ◽  
pp. 1350009 ◽  
Author(s):  
K. R. ARANGANAYAGAM ◽  
S. SENTHILKUMAAR ◽  
N. GANAPATHI SUBRAMANIAM ◽  
T. WANG KANG

Ruthenium doped zinc oxide was synthesized by a simple sol–gel method via ultrasonication. The samples were characterized by X-ray diffraction, high resolution scanning electron microscopy (HR-SEM), high resolution transmission electron microscope (HR-TEM), energy dispersive spectroscopy (EDS) and UV-visible spectroscopy techniques and tested for the feasibility as a heterogeneous photocatalyst. The photocatalytic activity of Ru doped ZnO was tested using an azo dye, congo red (CR) in an aqueous solution, as a model compound. For comparison, the photocatalytic activity of pure ZnO was also performed. The parameters studied include the effect of initial CR concentration, photocatalyst weight and charge transfer phenomenon. The observed reaction mechanism was rationalized based on the elementary chemical reaction occurring in the irradiated heterogeneous reaction mixture. Total mineralization of CR was observed for both pure and Ru doped ZnO system. However, the photocatalytic activity of Ru doped ZnO was found to be higher than that of a pure ZnO .


2007 ◽  
Vol 336-338 ◽  
pp. 1924-1926 ◽  
Author(s):  
Hong Li ◽  
Gao Ling Zhao ◽  
Gang Xu ◽  
Gao Rong Han

In order to investigate the effects of doping boron on the self-cleaning properties of TiO2 thin films, sol-gel method was employed to prepare TiO2 films with various amount of boron on the glass substrates. Atomic Force Microscope (AFM) and X-ray diffraction (XRD) were carried out to investigate the effects of boron on the microstructure and crystallization behavior of the thin films. The photocatalytic activity and the hydrophilicity of the films were also measured. The results showed that the photocatalytic activity of TiO2 films was improved by doping boron, and its hydrophilicity wasn’t destroyed. This can be ascribed to the enhancement of the surface energy, which was caused by the reduction of the crystal grain size of TiO2.


2011 ◽  
Vol 197-198 ◽  
pp. 857-860
Author(s):  
Han Yu Chen ◽  
Bao Shan Zhao ◽  
Zhao Hui Li

In this paper, a magnetic hollow fly ash microsphere(MHFM) was prepared by citrate sol-gel method and the Cu doped TiO2nanopowder were prepared by sol-gel process at which the novel magnetic Cu-doped TiO2photocatalyst (M-Cu/TiO2) was prepared by coating-calcining process. The crystal phase and morphology of M-Cu/TiO2were investigated by Scanning electron microscopy(SEM), X-ray diffraction(XRD), The photocatalytic activities of the prepared photocatalyst under different preparation conditions were evaluated by the degradation of methyl orange (MO). Results showed that these TiO2photocatalysts were highly efficient for the destruction of methylene orange in water. In addition, the multi-coating procedure made it possible to effectively control the physical properties of TiO2layer such as the coating thickness, amount of TiO2and photocatalytic activity. The floating catalyst made by this method could also be separated easily from the reaction system. And the multilayer film has higher photocatalytic activity than TiO2film under visible light irradiation.


2001 ◽  
Vol 16 (4) ◽  
pp. 907-909 ◽  
Author(s):  
Zi-Sheng Guan ◽  
Xin-Tong Zhang ◽  
Ying Ma ◽  
Ya-An Cao ◽  
Jian-Nian Yao

TiO2nanocrystals were prepared by a photo-assisted sol-gel process in which tetrabutoxide titanate was hydrolyzed in acidic medium under ultraviolet irradiation. X-ray diffraction and Raman spectra showed that the as-prepared TiO2particles without further annealing were well-crystallized anatase. Such TiO2particles were easily immobilized on dacron cloth and showed very high photocatalytic activity. In contrast, TiO2particles were ill crystallized and showed lower activity when no light was introduced under otherwise equal conditions.


2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


Sign in / Sign up

Export Citation Format

Share Document