scholarly journals AEg̅IS latest results

2018 ◽  
Vol 181 ◽  
pp. 01037 ◽  
Author(s):  
F. Guatieri ◽  
S. Aghion ◽  
C. Amsler ◽  
G. Angela ◽  
G. Bonomi ◽  
...  

The validity of the Weak Equivalence Principle (WEP) as predicted by General Relativity has been tested up to astounding precision using ordinary matter. The lack hitherto of a stable source of a probe being at the same time electrically neutral, cold and stable enough to be measured has prevented highaccuracy testing of the WEP on anti-matter. The AEg̅IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment located at CERN's AD (Antiproton Decelerator) facility aims at producing such a probe in the form of a pulsed beam of cold anti-hydrogen, and at measuring by means of a moiré deflectometer the gravitational force that Earth's mass exerts on it. Low temperature and abundance of the H̅ are paramount to attain a high precision measurement. A technique employing a charge-exchange reaction between antiprotons coming from the AD and excited positronium atoms is being developed at AEg̅IS and will be presented hereafter, alongside an overview of the experimental apparatus and the current status of the experiment

Author(s):  
D. Krasnický ◽  
S. Aghion ◽  
O. Ahlén ◽  
C. Amsler ◽  
A. Ariga ◽  
...  

[Formula: see text] experiment's main goal is to measure the local gravitational acceleration of antihydrogen [Formula: see text] and thus perform a direct test of the weak equivalence principle with antimatter. In the first phase of the experiment the aim is to measure [Formula: see text] with 1% relative precision. This paper presents the antihydrogen production method and a description of some components of the experiment, which are necessary for the gravity measurement. Current status of the [Formula: see text] experimental apparatus is presented and recent commissioning results with antiprotons are outlined. In conclusion we discuss the short-term goals of the [Formula: see text] collaboration that will pave the way for the first gravity measurement in the near future.


2018 ◽  
Vol 861 (1) ◽  
pp. 66 ◽  
Author(s):  
Calvin Leung ◽  
Beili Hu ◽  
Sophia Harris ◽  
Amy Brown ◽  
Jason Gallicchio ◽  
...  

2020 ◽  
Vol 499 (1) ◽  
pp. L53-L57
Author(s):  
Shu-Cheng Yang ◽  
Wen-Biao Han ◽  
Gang Wang

ABSTRACT The weak equivalence principle (WEP) is the cornerstone of gravitational theories. At the local scale, WEP has been tested to high accuracy by various experiments. On the intergalactic distance scale, WEP could be tested by comparing the arrival time of different messengers emitted from the same source. The gravitational time delay caused by massive galaxies is proportional to γ + 1, where the parameter γ is unity in general relativity. The values of γ for different massless particles should be different if WEP is violated, i.e. Δγ is used to indicate the deviation from WEP. So far, |Δγ| has been constrained with gamma-ray bursts, fast radio bursts, etc. Here, we report a new constraint of |Δγ| by using the gravitational wave data of binary black hole coalescences in the LIGO–Virgo catalogue GWTC-1. The best constraints imply that |Δγ| ≲ 10−15 at 90 per cent confidence level.


2000 ◽  
Vol 25 (6) ◽  
pp. 1245-1249 ◽  
Author(s):  
F.M. Huber ◽  
R.A. Lewis ◽  
E.W. Messerschmid ◽  
G.A. Smith

2014 ◽  
Vol 30 ◽  
pp. 1460267 ◽  
Author(s):  
C. S. Unnikrishnan

After a brief review of the evidence for the validity of the Weak Equivalence principle for anti-matter, I show that, contrary to general belief, the near equality of the Shapiro delay for photons, neutrinos and anti-neutrinos in the galactic gravitational potential is not a true test of the WEP for their intrinsic properties and quantum numbers due to the overwhelming contribution to the gravitational mass from the relativistic kinetic energy. Then I prove the remarkable result that particles that obey the Newtonian law of dynamics automatically respect the WEP due to the firm equivalence between the law of motion and the WEP in any relativistic scenario, through gravity of all the matter in the Universe. Thus a test of the validity of Newtons's law in any force field is a true test of the WEP and provides strong direct tests of WEP for anti-particles. This result opens up an entire new insight of conceptual and practical importance for the tests of WEP.


Sign in / Sign up

Export Citation Format

Share Document