scholarly journals Large N universality of the two-dimensional Yang-Mills string

1995 ◽  
Vol 446 (1-2) ◽  
pp. 3-15 ◽  
Author(s):  
Michael Crescimanno ◽  
Stephen G. Naculich ◽  
Howard J. Schnitzer
Keyword(s):  
2018 ◽  
Vol 175 ◽  
pp. 08004 ◽  
Author(s):  
Raghav G. Jha ◽  
Simon Catterall ◽  
David Schaich ◽  
Toby Wiseman

The lattice studies of maximally supersymmetric Yang-Mills (MSYM) theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme) between them.


1994 ◽  
Vol 335 (3-4) ◽  
pp. 371-376 ◽  
Author(s):  
Jean-Marc Daul ◽  
Vladimir A. Kazakov

2004 ◽  
Vol 19 (02) ◽  
pp. 205-225 ◽  
Author(s):  
FLORIAN DUBATH ◽  
SIMONE LELLI ◽  
ANNA RISSONE

Two-dimensional SU (N) Yang–Mills theory is known to be equivalent to a string theory, as found by Gross in the large N limit, using the 1/N expansion. Later it was found that even a generalized YM theory leads to a string theory of the Gross type. In the standard YM theory case, Douglas and others found the string Hamiltonian describing the propagation and the interactions of states made of strings winding on a cylindrical space–time. We address the problem of finding a similar Hamiltonian for the generalized YM theory. As in the standard case we start by writing the theory as a theory of free fermions. Performing a bosonization, we express the Hamiltonian in terms of the modes of a bosonic field, that are interpreted as in the standard case as creation and destruction operators for states of strings winding around the cylindrical space–time. The result is similar to the standard Hamiltonian, but with new kinds of interaction vertices.


2004 ◽  
Vol 696 (1-2) ◽  
pp. 55-65 ◽  
Author(s):  
M. Alimohammadi ◽  
M. Khorrami
Keyword(s):  

2007 ◽  
Vol 273 (2) ◽  
pp. 317-355 ◽  
Author(s):  
Sebastian de Haro ◽  
Sanjaye Ramgoolam ◽  
Alessandro Torrielli

2008 ◽  
Vol 23 (14n15) ◽  
pp. 2279-2280
Author(s):  
HIKARU KAWAI ◽  
MATSUO SATO

It has not been clarified whether a matrix model can describe various vacua of string theory. In this talk, we show that the IIB matrix model includes type IIA string theory1. In the naive large N limit of the IIB matrix model, configurations consisting of simultaneously diagonalizable matrices form a moduli space, although the unique vacuum would be determined by complicated dynamics. This moduli space should correspond to a part of perturbatively stable vacua of string theory. Actually, one point on the moduli space represents type IIA string theory. Instead of integrating over the moduli space in the path-integral, we can consider each of the simultaneously diagonalizable configurations as a background and set the fluctuations of the diagonal elements to zero. Such procedure is known as quenching in the context of the large N reduced models. By quenching the diagonal elements of the matrices to an appropriate configuration, we show that the quenched IIB matrix model is equivalent to the two-dimensional large N [Formula: see text] super Yang-Mills theory on a cylinder. This theory is nothing but matrix string theory and is known to be equivalent to type IIA string theory. As a result, we find the manner to take the large N limit in the IIB matrix model.


2005 ◽  
Vol 20 (01) ◽  
pp. 29-41 ◽  
Author(s):  
TOSHIHIRO MATSUO ◽  
SO MATSUURA

We discuss the equivalence between a string theory and the two-dimensional Yang–Mills theory with SU (N) gauge group for finite N. We find a sector which can be interpreted as a sum of covering maps from closed string worldsheets to the target space, whose covering number is less than N. This gives an asymptotic expansion of 1/N whose large N limit becomes the chiral sector defined by Gross and Taylor. We also discuss that the residual part of the partition function provides the nonperturbative corrections to the perturbative expansion.


Sign in / Sign up

Export Citation Format

Share Document