scholarly journals Dense quark matter with chiral and isospin imbalance: NJL-model consideration

2018 ◽  
Vol 191 ◽  
pp. 05015 ◽  
Author(s):  
Tamaz Khunjua ◽  
Konstantin Klimenko ◽  
Roman Zhokhov

Isospin asymmetry is the well-known property of dense quark matter, which exists in the compact stars and is produced in heavy ion collisions. On the other hand, the chiral imbalance between left- and right- handed quarks is another highly anticipated phenomenon that could occur in the dense quark matter. To investigate quark matter under these conditions, we take into account baryon – μB, isospin – μI and chiral isospin – μI5 chemical potentials and study QCD phase portrait using NJL4 model generalized to two massive quarks that could condense into the pion condensation. We have shown that the chiral isospin chemical potential μI5 generates pion condensation in isospin asymmetric quark matter. Also, we have investigated discrete symmetry (duality) between chiral and pion condensates in the case of massless quarks, which stay relatively instructive even if the quarks have bare mass. To describe hot dense quark matter, in addition to the above-mentioned chemical potentials, we introduce non-zero temperatures into consideration.

Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 778 ◽  
Author(s):  
Tamaz Khunjua ◽  
Konstantin Klimenko ◽  
Roman Zhokhov

In this short review we tried to give an outline of investigations of charged pion condensation (PC) in dense baryonic (quark) matter in the framework of effective Nambu–Jona-Lasinio (NJL)-type models. The possibility of charged PC phase in dense quark matter with isospin asymmetry is investigated. First, it is demonstrated that this phase can be realized in the framework of massless NJL model. However, the existence of this phase is enormously fragile to the values of current quark mass and we show that charged PC phase is forbidden in electrically neutral dense quark matter with β -equilibrium when current quark masses are close to their physical value of 5.5 MeV. Nevertheless, then it is shown that in real physical systems there could be conditions promoting the appearance of charged PC phenomenon in dense quark matter; specifically, it was shown that if one takes into consideration the fact that system can have finite size, then a dense charged PC phase can be realized there. It was also demonstrated that the possibility of inhomogeneous pion condensate might allow this phase to appear. In addition, more recently it was revealed that there is another interesting factor that can induce a charged PC phase in dense quark matter even without isospin imbalance. It is a chiral imbalance of the system (non-zero difference between densities of left- and right-handed quarks). These results can be interesting in heavy ion collision experiments, where it is expected to get high baryon densities. It is of interest also in the context of neutron stars, where quark matter might be realized in the core and very high baryon and isospin densities are attained.


2018 ◽  
Vol 191 ◽  
pp. 05016 ◽  
Author(s):  
T. G. Khunjua ◽  
K.G. Klimenko ◽  
R. N. Zhokhov–Larionov

In this paper we investigate the phase structure of a (1+1) and (3+1)-dimensional quark model with four-quark interaction and in the presence of baryon (μB), isospin (μI) and chiral isospin (μI5) chemical potentials. It is shown that the chemical potential μI5 promotes the appearance of the charged PC phase with nonzero baryon density. Results of both models are qualitatively the same, this fact enhances one's confidence in the obtained predictions. It is established that in the large-Nc limit (Nc is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
T. G. Khunjua ◽  
K. G. Klimenko ◽  
R. N. Zhokhov

AbstractThe phase diagram of dense quark matter with chiral imbalance is considered with the conditions of electric neutrality and $$\beta $$ β -equilibrium. It has been shown recently that chiral imbalance can generate charged pion condensation (PC) in dense quark matter. It was, therefore, interesting to verify that this phenomenon takes place in realistic physical scenarios such as electrically neutral quark matter in $$\beta $$ β -equilibrium, because a window of charged PC at dense quark matter phase diagram (without chiral imbalance) predicted earlier was closed by the consideration of these conditions at the physical current quark mass. In this paper it has been shown that the charged PC phenomenon is generated by chiral imbalance in the dense electric neutral quark/baryonic matter in $$\beta $$ β -equilibrium, i.e. matter in neutron stars. It has also been demonstrated that charged PC is an inevitable phenomenon in dense quark matter with chiral imbalance if there is nonzero chiral imbalance in two forms, chiral and chiral isospin one. It seems that in this case charged PC phase can be hardly avoided by any physical constraint on isospin imbalance and that this conclusion can be probably generalized from neutron star matter to the matter produced in heavy ion collisions or in neutron star mergers. The chiral limit and the physical point (physical pion mass) have both been considered and it was shown that the appearance of charged PC is not much affected by the consideration of nonzero current quark mass.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1521-1524 ◽  
Author(s):  
J. G. COELHO ◽  
C. H. LENZI ◽  
M. MALHEIRO ◽  
R. M. MARINHO ◽  
M. FIOLHAIS

We investigate the hadron-quark phase transition inside neutron stars and obtain mass–radius relations for hybrid stars. The equation of state for the quark phase using the standard NJL model is too soft, leading to an unstable star and suggesting a modification of the NJL model by introducing a momentum cutoff dependent on the chemical potential. However, even in this approach, the instability remains. In order to remedy the instability we suggest the introduction of a vector coupling in the NJL model, which makes the EoS stiffer, reducing the instability. We conclude that the possible existence of quark matter inside the stars require high densities, leading to very compact stars.


2018 ◽  
Vol 47 ◽  
pp. 1860093 ◽  
Author(s):  
T. G. Khunjua ◽  
V. C. Zhukovsky ◽  
K. G. Klimenko ◽  
R. N. Zhokhov

In this talk we present investigation of the phase structure of a (1+1)-dimensional quark model with four-quark interaction and in the presence of baryon ([Formula: see text]), isospin ([Formula: see text]) and chiral isospin ([Formula: see text]) chemical potentials. Spatially homogeneous and inhomogeneous (chiral density wave (for chiral condensate) and single wave (for charged pion condensate)) condensates are considered. It is established that in the large-[Formula: see text] limit ([Formula: see text] is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The primary conclusion of this investigation is the fact that chiral isospin chemical potential generates charged pion condensation with non-zero baryon density in dense quark matter. Moreover, it is shown that inhomogeneous charged PC phase with nonzero baryon density is induced in the model by arbitrary small values of the chemical potential [Formula: see text] (for a rather large region of [Formula: see text] and [Formula: see text]).


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Nicolas Kovensky ◽  
Andreas Schmitt

We study baryonic matter with isospin asymmetry, including fully dynamically its interplay with pion condensation. To this end, we employ the holographic Witten-Sakai-Sugimoto model and the so-called homogeneous ansatz for the gauge fields in the bulk to describe baryonic matter. Within the confined geometry and restricting ourselves to the chiral limit, we map out the phase structure in the presence of baryon and isospin chemical potentials, showing that for sufficiently large chemical potentials condensed pions and isospin-asymmetric baryonic matter coexist. We also present first results of the same approach in the deconfined geometry and demonstrate that this case, albeit technically more involved, is better suited for comparisons with and predictions for real-world QCD. Our study lays the ground for future improved holographic studies aiming towards a realistic description of charge neutral, beta-equilibrated matter in compact stars, and also for more refined comparisons with lattice studies at nonzero isospin chemical potential.


2017 ◽  
Vol 26 (06) ◽  
pp. 1750034 ◽  
Author(s):  
Jian-Feng Xu ◽  
Yan-An Luo ◽  
Lei Li ◽  
Guang-Xiong Peng

The properties of dense quark matter are investigated in the perturbation theory with a rapidly convergent matching-invariant running coupling. The fast convergence is mainly due to the resummation of an infinite number of known logarithmic terms in a compact form. The only parameter in this model, the ratio of the renormalization subtraction point to the chemical potential, is restricted to be about 2.64 according to the Witten–Bodmer conjecture, which gives the maximum mass and the biggest radius of quark stars to be, respectively, two times the solar mass and 11.7[Formula: see text]km.


2017 ◽  
Vol 2017 ◽  
pp. 1-24 ◽  
Author(s):  
Alejandro Ayala ◽  
C. A. Dominguez ◽  
M. Loewe

The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for deconfinement, as later confirmed by lattice QCD simulations. Also included are determinations in the light-quark vector and axial-vector channels, allowing analysing the Weinberg sum rules and predicting the dimuon spectrum in heavy-ion collisions in the region of the rho-meson. Also, in this sector, the determination of the temperature behaviour of the up-down quark mass, together with the pion decay constant, will be described. Finally, an extension of the QCD sum rule method to incorporate finite baryon chemical potential is reviewed.


1999 ◽  
Vol 59 (4) ◽  
pp. R1829-R1833 ◽  
Author(s):  
T. A. Armstrong ◽  
K. Barish ◽  
S. J. Bennett ◽  
A. Chikanian ◽  
S. D. Coe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document