scholarly journals Anomalous absorption in ECRH experiments due to the parametric low-threshold excitation of localized UH waves

2019 ◽  
Vol 203 ◽  
pp. 01002
Author(s):  
Alexei Yu. Popov ◽  
Evgeniy Z. Gusakov

We describe the theoretical model which interprets the anomalous phenomena, i.e. the generation of backscattering signal observed in the ECRH experiments at TEXTOR, TCV, TJ-II, ASDEX-UG, LHD and FTU, as a consequence of the excitation of the parametric decay instability (PDI) leading to anomalous damping of the pump wave. The PDI power-threshold is shown to be extremely low due to the localization of both or one daughter upper hybrid (UH) waves in presence of a nonmonotonic (hollow) density profile, which is often observed in the ECRH experiments due to the magnetic island or the density pump-out effect. In the case of the extraordinary wave pump the model predicts substantial (up to 25%) anomalous absorption in the electron channel and explains the anomalous ion acceleration by the generation of secondary low frequency waves which directly transfer the pump power to the ion component. The possibility of anomalous absorption of the O-mode pump in the ECRH experiment due to the parametric excitation of trapped UH wave is also discussed and the anomalous absorption rate at the 10% level is predicted.

2019 ◽  
Vol 203 ◽  
pp. 02005 ◽  
Author(s):  
Alessandro Bruschi ◽  
Edoardo Alessi ◽  
Benedetta Baiocchi ◽  
William Bin ◽  
Ocleto D’Arcangelo ◽  
...  

The evidence of Parametric Decay Instabilities (PDI) excited by the ECH power injected in O-Mode has been explored in FTU Tokamak, using the Collective Thomson Scattering (CTS) diagnostic. The experiments show evidences to support the hypothesis of low-threshold excitation of waves generated by PDI mechanisms, formerly proposed in the case of 2nd harmonic X-mode injection in TEXTOR and ASDEX-U. Theoretical analysis predicts low-threshold parametric decay also for O-mode pump-wave injection, which can be injected in FTU at frequencies close to the first Harmonic EC resonance. Experiments were made at different magnetic fields, injecting the 140 GHz probe and observing the emission from the second antenna of the EC launcher in poloidally symmetric and asymmetric configurations, in presence of MHD islands. The signal is detected by the CTS radiometers, with a fast digitizer allowing the spectral reconstruction at very fine time and frequency scales. Different types of emissions are studied in detail, comparing them with the magnetic island rotation frequency in different plasma conditions. In order to locate the plasma volume originating the emissions, a new antenna and receiving line has been installed.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-F. Ripoll ◽  
T. Farges ◽  
D. M. Malaspina ◽  
G. S. Cunningham ◽  
E. H. Lay ◽  
...  

AbstractLightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both from ground and space. From burst-triggered measurements, we compute electric and magnetic power spectral density for very low frequency waves driven by superbolts, both on Earth and transmitted into space, demonstrating that superbolts transmit 10-1000 times more powerful very low frequency waves into space than typical strokes and revealing that their extreme nature is observed in space. We find several properties of superbolts that notably differ from most lightning flashes; a more symmetric first ground-wave peak due to a longer rise time, larger peak current, weaker decay of electromagnetic power density in space with distance, and a power mostly confined in the very low frequency range. Their signal is absent in space during day times and is received with a long-time delay on the Van Allen Probes. These results have implications for our understanding of lightning and superbolts, for ionosphere-magnetosphere wave transmission, wave propagation in space, and remote sensing of extreme events.


Sign in / Sign up

Export Citation Format

Share Document