scholarly journals Measurements and tests of hadronic interactions at ultra-high energies with the Pierre Auger Observatory

2019 ◽  
Vol 210 ◽  
pp. 02002
Author(s):  
Lorenzo Cazon ◽  

Extensive air showers are complex objects, resulting of billions of particle reactions initiated by single cosmic ray at ultra-high-energy. Their characteristics are sensitive both to the mass of the primary cosmic ray and to the details of hadronic interactions. Many of the interactions that determine the shower features occur in kinematic regions and at energies beyond those tested by human-made accelerators. We will report on the measurement of the proton-air cross section for particle production at a center-of-mass energy per nucleon of 39 TeV and 56 TeV. We will also show comparisons of post-LHC hadronic interaction models with shower data by studying the moments of the distribution of the depth of the electromagnetic maximum, the number and production depth of muons in air showers, and finally a parameter based on the rise-time of the surface detector signal, sensitive to the electromagnetic and muonic component of the shower. While there is good agreement found for observables based on the electromagnetic shower component, discrepancies are observed for muon-sensitive quantities.

2019 ◽  
Vol 208 ◽  
pp. 01001
Author(s):  
Yoshitaka Itow

Hadronic interactions of very high energy cosmic rays have been studied in various aspects of motivation. In recent decades, mainly motivated by air shower experiments, modelling of very high energy cosmic ray interactions have been greatly improved together with new data obtained from high energy colliders such as the LHC. Regarding recent rapid progress of multi-messenger astronomy, a precise knowledge on secondary particle production by cosmic rays at very high energy is largely indispensable. This would give us a new insight and new motivation to study minimum bias hadronic interactions of very high energy cosmic rays.


2019 ◽  
Vol 208 ◽  
pp. 12001
Author(s):  
Hirotsugu Fujii

After a brief introduction of parton saturation in hadrons at small Bjorken's x, we recapitulate its phenomenological implications in high-energy particle production, such as longitudinal correlation, particle mulctiplicity, limiting fragmentation and charm quark production, which may have relevance to study of highenergy cosmic ray physics.


2019 ◽  
Vol 208 ◽  
pp. 08003 ◽  
Author(s):  
Raul R. Prado

The hybrid design of the Pierre Auger Observatory allows for the measurement of a number of properties of extensive air showers initiated by ultra-high energy cosmic rays. By comparing these measurements to predictions from air shower simulations, it is possible to both infer the cosmic ray mass composition and test hadronic interactions beyond the energies reached by accelerators. In this paper, we will present a compilation of results of air shower measurements by the Pierre Auger Observatory which are sensitive to the properties of hadronic interactions and can be used to constrain the hadronic interaction models. The inconsistencies found between the interpretation of different observables with regard to primary composition and between their measurements and simulations show that none of the currently used hadronic interaction models can provide a proper description of air showers and, in particular, of the muon production.


2003 ◽  
Vol 18 (11) ◽  
pp. 1843-1882 ◽  
Author(s):  
MARCO CAVAGLIÀ

In models with large extra dimensions, particle collisions with center-of-mass energy larger than the fundamental gravitational scale can generate nonperturbative gravitational objects such as black holes and branes. The formation and the subsequent decay of these super-Planckian objects would be detectable in particle colliders and high energy cosmic ray detectors, and have interesting implications in cosmology and astrophysics. In this paper we present a review of black hole and brane production in TeV-scale gravity.


2019 ◽  
Vol 208 ◽  
pp. 04005
Author(s):  
D. Kang ◽  
W.D. Apel ◽  
J.C. Arteaga-Velázquez ◽  
K. Bekk ◽  
M. Bertaina ◽  
...  

KASCADE, together with its extension KASCADE-Grande measured individual air showers of cosmic rays in the primary energy range of 100 TeV to 1 EeV. The data collection was fully completed at the end of 2013 and the experiment was dismantled. However, the data analysis is still in progress. Recently, we published a new result on upper limits to the flux of ultra-high energy gamma rays, which set constraints on some fundamental astrophysical models. We also use the data to investigate the validity of the new hadronic interactions models like SIBYLL version 2.3c or EPOS-LHC. In addition, we updated and improved the webbased platform of the KASCADE Cosmic Ray Data Centre (KCDC), where now the data from KASCADE and KASCADE-Grande of more than 20 years measurements is available, including corresponding Monte-Carlo simulated events based on three different hadronic interaction models. In this contribution, recent results from KASCADE-Grande and the update of KCDC is briefly discussed.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2015 ◽  
Vol 30 (22) ◽  
pp. 1550131 ◽  
Author(s):  
A. Tawfik ◽  
E. Gamal ◽  
A. G. Shalaby

The production of pion, kaon and proton was measured in Pb–Pb collisions at nucleus–nucleus center-of-mass energy [Formula: see text] by the ALICE experiment at Large Hadron Collider (LHC). The particle ratios of these species compared to the RHIC measurements are confronted to the hadron resonance gas (HRG) model and to simulations based on the event generators PYTHIA 6.4.21 and HIJING 1.36. It is found that the homogeneous particle–antiparticle ratios (same species) are fully reproducible by means of HRG and partly by PYTHIA 6.4.21 and HIJING 1.36. The mixed kaon–pion and proton–pion ratios measured at RHIC and LHC energies seem to be reproducible by the HRG model. On the other hand, the strange abundances are underestimated in both event generators. This might be originated to strangeness suppression in the event generators and/or possible strangeness enhancement in the experimental data. It is apparent that the values of kaon–pion ratios are not sensitive to the huge increase of [Formula: see text] from 200 (RHIC) to 2760 GeV (LHC). We conclude that the ratios of produced particle at LHC seem not depending on the system size.


1993 ◽  
Vol 08 (40) ◽  
pp. 3853-3859 ◽  
Author(s):  
D. K. MAITY ◽  
P. K. BANERJEE ◽  
B. B. DAS ◽  
D. RAVINDRAN ◽  
D. K. BHATTACHARJEE

A study of intermittency in hadron-nucleus and the comparison with nucleus-nucleus interactions is presented. The power law behavior of the factorial moments and the variation of intermittency index with the center-of-mass energy are shown. Results favor the formation of quark-gluon plasma in preference to a cascade mechanism.


Nukleonika ◽  
2020 ◽  
Vol 65 (4) ◽  
pp. 211-215
Author(s):  
Sarwat Zahra ◽  
Bushra Shafaq ◽  
Bushra Kanwal ◽  
Nosheen Akbar

AbstractBy considering energy-dependent form factors extracted from generalized Chou–Yang model, root mean square (rms) charge radii of deuteron and helium nuclei (alpha) are predicted at different values of center of mass energy which are in good agreement with theoretical predictions and experimental results. The rms radius is inversely proportional to mass of nuclei. Besides, the relationship between radii and energy are also derived.


Sign in / Sign up

Export Citation Format

Share Document