scholarly journals On the global flow-field dynamics around an airfoil

2019 ◽  
Vol 213 ◽  
pp. 02089 ◽  
Author(s):  
Václav Uruba ◽  
Pavel Procházka ◽  
Vladislav Skála

The global flow-field around an airfoil will be studied using time-resolved PIV technique. Interactions between pressure and suction sides flows will be studied in detail. Spanwise structures dynamics is to be analysed.

2018 ◽  
Vol 180 ◽  
pp. 02029
Author(s):  
Renata Gnatowska ◽  
Radka Kellnerová ◽  
Václav Uruba

The flow-field in the vicinity of tandem building model in a wind tunnel will be subjected to analysis of dynamics. The model is 3D consisting of the two blocks of different sizes arranged in a streamwise direction. Experiments were performed using time-resolved PIV technique in several measuring planes to capture both spatial and dynamical features.


Author(s):  
Sarah Gaertlein ◽  
Rene Woszidlo ◽  
Florian Ostermann ◽  
C. Nayeri ◽  
Christian O. Paschereit

Author(s):  
Hauke Ehlers ◽  
Robert Konrath ◽  
Marcel Börner ◽  
Ralf Wokoeck ◽  
Rolf Radespiel

2021 ◽  
pp. 1-33
Author(s):  
Eric DeShong ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Karen A. Thole

Abstract The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may employ clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates non-axisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotor-casing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.


2021 ◽  
Vol 33 (9) ◽  
pp. 095105
Author(s):  
Longyan Wang ◽  
Zhaohui Luo ◽  
Jian Xu ◽  
Wei Luo ◽  
Jianping Yuan

Author(s):  
Fabian F. Müller ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
Jens Aschenbruck

The influence of a cylindrical strut shortly downstream of the bladerow on the vibration behavior of the last stage rotor blades of a single stage LP model steam turbine was investigated in the present study. Steam turbine retrofits often result in an increase of turbine size, aiming for more power and higher efficiency. As the existing LP steam turbine exhaust hoods are generally not modified, the last stage rotor blades frequently move closer to installations within the exhaust hood. To capture the influence of such an installation on the flow field characteristics, extensive flow field measurements using pneumatic probes were conducted at the turbine outlet plane. In addition, time-resolved pressure measurements along the casing contour of the diffuser and on the surface of the cylinder were made, aiming for the identification of pressure fluctuations induced by the flow around the installation. Blade vibration behavior was measured at three different operating conditions by means of a tip timing system. Despite the considerable changes in the flow field and its frequency content, no significant impact on blade vibration amplitudes were observed for the investigated case and considered operating conditions. Nevertheless, time-resolved pressure measurements suggest that notable pressure oscillations induced by the vortex shedding can reach the upstream bladerow.


2013 ◽  
Vol 54 (5) ◽  
Author(s):  
P. H. Geoghegan ◽  
N. A. Buchmann ◽  
J. Soria ◽  
M. C. Jermy

Author(s):  
Martin Lipfert ◽  
Jan Habermann ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Yavuz Guendogdu

In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the altitude test-facility aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multi-stage CFD predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positve incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions vane 1 passage vortex fluid is involved in the midspan passage interaction leading to a more distorted three-dimensional flow field.


Sign in / Sign up

Export Citation Format

Share Document