scholarly journals Shape transitions between and within Zr isotopes

2019 ◽  
Vol 223 ◽  
pp. 01070
Author(s):  
V. Werner ◽  
W. Witt ◽  
T. Beck ◽  
N. Pietralla ◽  
M. Boromiza ◽  
...  

The Zirconium isotopes across the N=56,58 neutron sub­shell closures have been of special interest since years, sparked by the near doubly-magic features of 96Zr and the subsequent rapid onset of collectivity with a deformed ground-state structure already in 100Zr. Recent state-of-the-art shell model approaches did not only correctly describe this shape-phase transition in the Zr isotopic chain, but alsothe coexistence of non-collective structures and pronounced collectivity especially in 96,98Zr. Theisotope 98Zr is located on the transition from spherical to deformed ground state structures. We summarize recent experimental work to obtain the B(E2) excitation strengths of the first 2+ state of98Zr, including a new experiment employing the recoil-distance Doppler-shift method following a two-neutron transfer reaction.

Author(s):  
Jagit Singh ◽  
Wataru Horiuchi

Recently, the energy spectrum of \boldsymbol{^{10}}10Li was measured upto \boldsymbol{4.6}4.6 MeV, via one-neutron transfer reaction \boldsymbol{d(^{9}\textrm{Li},~p)^{10}\textrm{Li}}𝐝(9Li,𝐩)10Li. Considering the ambiguities on the \boldsymbol{^{10}}10Li continuum spectrum with reference to new data, we report the configuration mixing in the ground state of the two-neutron halo nucleus \boldsymbol{^{11}}11Li for two different choices of the \boldsymbol{^{9}{\textrm{Li}}+n}9Li+𝐧 potential. For the present study, we employ a three-body (\boldsymbol{\textrm{core}+n+n}core+𝐧+𝐧) structure model developed for describing the two-neutron halo system by explicit coupling of unbound continuum states of the subsystem (\boldsymbol{\textrm{core}+n}core+𝐧), and discuss the two-neutron correlations in the ground state of \boldsymbol{^{11}}11Li.


2014 ◽  
Vol 1081 ◽  
pp. 84-87
Author(s):  
Xiu Rong Zhang ◽  
Fu Xing Zhang

Geometric structure of Osn(n=2-10) clusters are optimized by using Density functional theory (DFT) in DMOL3 package. For the ground-state structure, relative stability are analyzed. The results show that: the ground-state structures of the cluster are plane structure when n=2-4, but the ground-state structures are stereostructure when n≥5. There exhibits the odd-even oscillation effect in stability and Os8cluster has the highest stability.


2018 ◽  
Vol 178 ◽  
pp. 02025 ◽  
Author(s):  
C. Burbadge ◽  
P.E. Garrett ◽  
G.C. Ball ◽  
V. Bildstein ◽  
A. Diaz Varela ◽  
...  

Many efforts have been made in nuclear structure physics to interpret the nature of low-lying excited 0+ states in well-deformed rare-earth nuclei. However, one of the difficulties in resolving the nature of these states is that there is a paucity of data. In this work, excited 0+ states in the N = 92 nucleus 160Er were studied via the 162Er(p, t)160Er two-neutron transfer reaction, which is ideal for probing 0+ → 0+ transitions, at the Maier-Leibnitz-Laboratorium in Garching, Germany. Reaction products were momentum-analyzed with a Quadrupole-3-Dipole magnetic spectrograph. The 0+2 state was observed to be strongly populated with 18% of the ground state strength.


1993 ◽  
Vol 07 (26) ◽  
pp. 4305-4329 ◽  
Author(s):  
C.Z. WANG ◽  
B.L. ZHANG ◽  
K.M. HO ◽  
X.Q. WANG

The recent development in understanding the structures, relative stability, and electronic properties of large fullerenes is reviewed. We describe an efficient scheme to generate the ground-state networks for fullerene clusters. Combining this scheme with quantum-mechanical total-energy calculations, the ground-state structures of fullerenes ranging from C 20 to C 100 have been studied. Fullerenes of sizes 60, 70, and 84 are found to be energetically more stable than their neighbors. In addition to the energies, the fragmentation stability and the chemical reactivity of the clusters are shown to be important in determining the abundance of fullerene isomers.


2000 ◽  
Vol 61 (6) ◽  
Author(s):  
A. Metz ◽  
Y. Eisermann ◽  
A. Gollwitzer ◽  
R. Hertenberger ◽  
B. D. Valnion ◽  
...  

2016 ◽  
Vol 120 (20) ◽  
pp. 11060-11067 ◽  
Author(s):  
Shuyin Yu ◽  
Bowen Huang ◽  
Xiaojing Jia ◽  
Qingfeng Zeng ◽  
Artem R. Oganov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document