scholarly journals Sidewall friction in confined surface flows of granular materials

2021 ◽  
Vol 249 ◽  
pp. 03024
Author(s):  
Patrick Richard ◽  
Alexandre Valance ◽  
Renaud Delannay

We report numerical simulations of surface granular flows confined between two sidewalls. These systems exhibit both very slow and very energetic flows. Zhu et al. [1] have shown that in energetic confined systems, the Froude number at sidewalls and the sidewall effective friction coefficient are linked through a unique relation. We show that this relation is also valid for creep flows. It is independent of the angle of the flow but depends on the sidewall-grain friction coefficient. Our results shed light on boundary conditions that have to be used at sidewalls in continuum theories aiming to capture the behavior of granular systems from creeping to energetic flows.

2021 ◽  
Vol 249 ◽  
pp. 02011
Author(s):  
Daisuke Ishima ◽  
Hisao Hayakawa

We perform numerical simulations of a two-dimensional frictional granular system under oscillatory shear confined by constant pressure. We found that the system undergoes dilatancy as the strain increases. We confirmed that compaction also takes place at an intermediate strain amplitude for a small mutual friction coefficient between particles. We also found that compaction depends on the confinement pressure while dilatancy little depends on the pressure.


Author(s):  
Charles S Campbell

Large scale landslide simulations provided the surprising result that the effective friction coefficient (the ratio of shear to normal forces at the base of the slide) increased with the shear rate. This might possibly explain the effect of slide volume on the runout of large landslides, but it also indicates that landslides operated in an entirely new and unexplored flow regime.Previously, granular flows had been divided into (1) the slow, quasistatic regime, in which the effective friction coefficient is taken to be a material property and thus constant, and (2) the fast, rapid-flow regime, where the particles interact collisionally, but which scales in such a way that the effective friction coefficient is independent of the shear rate. Both indicate that the effective friction coefficient is independent of the shear rate. Consequently the landslides operated in a separate intermediate regime.This talk will discuss detailed computer simulation studies into this intermediate regime and into the transitions between regimes. In this way, it is possible to draw the entire flowmap connecting the quasistatic and rapid-flow regimes. The key was to include the elastic properties of the solid material in the set of rheological parameters; in effect this put solid properties into the rheology of granular solids, properties that were unnecessary in previous theories as a result of the plasticity and kinetic theory formalisms on which quasistatic and rapid-flow theories are respectively based. Granular flows are then divided into two broad categories, the Elastic Regimes, in which the particles are locked in force chains and interact elastically over long duration contact with their neighbors and the Inertial regimes, where the particles have broken free of the force chains. The Elastic regimes can be further subdivided into the Elastic-Quasistatic regime (the old quasistatic regime) and the Elastic-Inertial regime. The Elastic-Inertial regime is the “new” regime observed in the landslide simulations, in which the inertially induced stresses are significant compared to the elastically induced stresses. The Inertial regime can also be sub-divided into an Inertial-Non-Collisional where the stresses scale inertially, but the particles interact through long duration contacts, and the Inertial-Collisional or the old rapid-flow regime.Finally, it will be shown that Stress-Controlled flows are rheologically different from Controlled-Volume flows. Physically, there is a range of dense concentrations (solid volume fractions between 0.5 and 0.6) in which it is possible to form force chains and thus to demonstrate elastically. But there are conditions under which force chains do not form at the same average concentrations. (In other words it is possible for the material to exhibit two different states at the same concentration.) By forcing the material to support an applied loads across force chains, Stress-Controlled flows generally behave elastically through this range of concentrations under the same conditions where Controlled-Volume flows behave inertially.


2005 ◽  
Vol 15 (03) ◽  
pp. 343-374 ◽  
Author(s):  
GUY BAYADA ◽  
NADIA BENHABOUCHA ◽  
MICHÈLE CHAMBAT

A thin micropolar fluid with new boundary conditions at the fluid-solid interface, linking the velocity and the microrotation by introducing a so-called "boundary viscosity" is presented. The existence and uniqueness of the solution is proved and, by way of asymptotic analysis, a generalized micropolar Reynolds equation is derived. Numerical results show the influence of the new boundary conditions for the load and the friction coefficient. Comparisons are made with other works retaining a no slip boundary condition.


2021 ◽  
Vol 263 (6) ◽  
pp. 965-969
Author(s):  
Tyrode Victor ◽  
Nicolas Totaro ◽  
Laurent Maxit ◽  
Alain Le Bot

In Statistical Energy Analysis (SEA) and more generally in all statistical theories of sound and vibration, the establishment of diffuse field in subsystems is one of the most important assumption. Diffuse field is a special state of vibration for which the vibrational energy is homogeneously and isotropically distributed. For subsystems excited with a random white noise, the vibration tends to become diffuse when the number of modes is large and the damping sufficiently light. However even under these conditions, the so-called coherent backscattering enhancement (CBE) observed for certain symmetric subsystems may impede diffusivity. In this study, CBE is observed numerically and experimentally for various geometries of subsystem. Also, it is shown that asymmetric boundary conditions leads to reduce or even vanish the CBE. Theoretical and numerical simulations with the ray tracing method are provided to support the discussion.


2017 ◽  
Vol 140 ◽  
pp. 03081 ◽  
Author(s):  
Velotiana Jean-Luc Ralaiarisoa ◽  
Alexandre Valance ◽  
Nicolas Brodu ◽  
Renaud Delannay

Sign in / Sign up

Export Citation Format

Share Document