scholarly journals Comparison of active and passive EMI filters to reduction conducted noise

2018 ◽  
Vol 19 ◽  
pp. 01002 ◽  
Author(s):  
Marian Pasko ◽  
Marek Szymczak

The article presents the results of experimental studies of passive and active EMI filters for reduction of conducted noise. Firstly, the article presents selected structures of passive filters that have been tested in terms of insertion loss parameter describing their efficiency. Then, active filters were used to improve the efficiency of insertion loss of passive filters under the same conditions. Finally, the results and conclusions are drawn from the measurements of both types of filters for the reduction of conducted noise.

Author(s):  
Alexandre G. Merçon ◽  
Lucas F. Encarnação ◽  
Luís F. C. Monteiro ◽  
Emanuel L. van Emmerik ◽  
Maurício Aredes

Passive filters, commonly used to attenuate non-characteristic harmonics in High Voltage Direct Current (HVDC) systems, stay at risk of disconnection from the system due to overcurrent problems. A possible solution to solve the problems involving high harmonic levels would be the use of pure active filters. However, this alternative is unpractical due to the high power of the transmission systems. This paper proposes two different topologies of hybrid filters to damp harmonic resonance in power transmission systems. The first one combines a small-rated active filter in series with passive filters, limiting overcurrents, when existent, or improving its own quality factor. The second one consists of an active filter in parallel with passive filters, which compensates all eventual overcurrent in the system bus. Both topologies utilizes the state of the art in very high power semiconductors and multilevel power converters. Simulation results present a comparative analysis, highlighting the efficiency of, and the differences between, the two proposed hybrid filters.


Author(s):  
Francisco G. Montoya ◽  
Alfredo Alcayde ◽  
Francisco M. Arrabal-Campos ◽  
Raul Baños

Non-linear loads in circuits cause the appearance of harmonic disturbances both in voltage and current. In order to minimize the effects of these disturbances and, therefore, to control over the flow of electricity between the source and the load, they are often used passive or active filters. Nevertheless, determining the type of filter and the characteristics of their elements is not a trivial task. In fact, the development of algorithms for calculating the parameters of filters is still an open question. This paper analyzes the use of genetic algorithms to maximize the power factor compensation in non-sinusoidal circuits using passive filters, while concepts of geometric algebra theory are used to represent the flow of power in the circuits. According to the results obtained in different case studies, it can be concluded that the genetic algorithm obtain high quality solutions that could be generalized to similar problems of any dimension.


2014 ◽  
Vol 792 ◽  
pp. 133-138 ◽  
Author(s):  
Mircea Buzdugan ◽  
Horia Balan

This paper analyzes an EMI filter solution to diminish the effect of harmonics generated by PWM converters in active filters. Throughout this paper, we have presented specific problems regarding the design, simulation and the validation of the model by testing EMI filters. It can be mentioned that the tests of the experimental model were performed in a laboratory, using existing conditions for the non linear consumer, by generating distorted waveforms.


Author(s):  
Djellouli Djoudi ◽  
Benoudjafer Cherif ◽  
Toumi Toufik ◽  
Othmane Abdelkhalek

In a low-voltage electrical network, harmonics, reactive power, the current and voltage imbalance, and voltage dips have harmful effects on electrical equipments. To overcome these problems, the hybrid UPQC is proposed. This paper discusses the structure of passive filters, parallel active filters, serial and combines (UPQC) to study the compensation of all types of disturbances likely to appear in the grid. Furthermore, the aim of reducing the size, cost of UPQC is to improve the quality of electric power, making it in compliance with the new regulatory constraints, we proposed the hybrid UPQC which uses passive filters and a combination of active filters. To validate the proposed topology, several sags of source voltage have been applied, at the point of common coupling (PCC). The simulation results from MATLAB/Simulink are discussed to verify the proposed topology.


2020 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
M. Reza Hidayat ◽  
Mohamad Hamzah Zamzam ◽  
Salita Ulitia Prini

A waveguide is a transmission medium in the form of a pipe and is made from a single conductor. A waveguide has the function of delivering electromagnetic waves with a frequency of 300 MHz - 300 GHz and is able to direct the waves in a particular direction. In its development, a waveguide can be used as a filter. A filter consists of several circuits designed to pass signals that are generated at a specific frequency and attenuate undesired signals. One type of filter that can pass a signal in a particular frequency range and block signals that are not included in that frequency range is a bandpass filter. In this article, we study a rationing analysis on rectangular waveguide using TEmn mode followed by an implementation of a bandpass filter in the frequency range of 3.3-3.5 GHz for S-Band Wireless Broadband and Fixed Satellite. The observation process is done by shifting the position of the connector (power supply) as much as five times the shift to get the results as desired. Based on the analysis of the simulation process using Ansoft HFSS software, it is observed that the optimized results of the rectangular waveguide mode TE10 were obtained at a distance between connectors of 30 mm with a cut-off frequency of 3.3 GHz, the value of the return loss parameter of -34.442 dB and an insertion loss of -0.039 dB. Whereas, the optimized TE20 mode can be obtained at a distance of 70 mm between connectors, with a cut-off frequency of 3.5 GHz, the value of the return loss parameter of -28.718 dB and an insertion loss of -0.045. The measurement of TE10 mode in our Vector Network Analyzer (VNA) shows a cut-off frequency of 3.2 GHz, with a value of the return loss of -18.73 dB and an insertion loss of -2.70 dB. Meanwhile, a measurement of TE20 mode results in a cut-off frequency of 3.2 GHz, with a value of the return loss of -5.89 dB and an insertion loss of -4.31 dB.


Sign in / Sign up

Export Citation Format

Share Document