scholarly journals A unified schedule policy of distributed machine learning framework for CPU-GPU cluster

Author(s):  
Ziyu Zhu ◽  
Xiaochun Tang ◽  
Quan Zhao

With the widespread using of GPU hardware facilities, more and more distributed machine learning applications have begun to use CPU-GPU hybrid cluster resources to improve the efficiency of algorithms. However, the existing distributed machine learning scheduling framework either only considers task scheduling on CPU resources or only considers task scheduling on GPU resources. Even considering the difference between CPU and GPU resources, it is difficult to improve the resource usage of the entire system. In other words, the key challenge in using CPU-GPU clusters for distributed machine learning jobs is how to efficiently schedule tasks in the job. In the full paper, we propose a CPU-GPU hybrid cluster schedule framework in detail. First, according to the different characteristics of the computing power of the CPU and the computing power of the GPU, the data is divided into data fragments of different sizes to adapt to CPU and GPU computing resources. Second, the paper introduces the task scheduling method under the CPU-GPU hybrid. Finally, the proposed method is verified at the end of the paper. After our verification for K-Means, using the CPU-GPU hybrid computing framework can increase the performance of K-Means by about 1.5 times. As the number of GPUs increases, the performance of K-Means can be significantly improved.

2021 ◽  
Vol 13 (1) ◽  
pp. 203-219
Author(s):  
Yulu Pi

The unprecedented increase in computing power and data availability has signifi-cantly altered the way and the scope that organizations make decisions relying on technologies. There is a conspicuous trend that organizations are seeking the use of frontier technologies with the purpose of helping the delivery of services and making day-to-day operational deci-sions. Machine learning (ML) is the fastest growing and at the same time, the most debated and controversial of these technologies. Although there is a great deal of research in the literature related to machine learning applications, most of them focus on the technical aspects or pri-vate sector use. The governmental machine learning applications suffer the lack of theoretical and empirical studies and unclear governance framework. This paper reviews the literature on the use of machine learning by government, aiming to identify the benefits and challenges of wider adoption of machine learning applications in the public sector and to propose the direc-tions for future research.


2021 ◽  
Vol 11 (4) ◽  
pp. 312
Author(s):  
Andrzej Konieczny ◽  
Jakub Stojanowski ◽  
Magdalena Krajewska ◽  
Mariusz Kusztal

We are overwhelmed by a deluge of data and, although its interpretation is challenging, fortunately, information technology comes to the rescue. One of the tools is artificial intelligence, allowing the identification of relationships between variables and their arbitrary classification. We focused on the assessment of both the remission of proteinuria and the deterioration of kidney function in patients with IgA nephropathy, comparing several methods of machine learning. It is of utmost importance to respond to subtle changes in kidney function, which will lead to a deceleration of the disease. This goal has been achieved by analyzing regression techniques, predicting the difference in serum creatinine concentration. We obtained the performance of the tested models which classified patients with high accuracy (Random Forest Classifier showed an accuracy of 0.8–1.0, Multi-Layer Perceptron an Area Under Curve of 0.8842–0.9035 and an accuracy of 0.7527–1.0) and regressors with a low estimation error (Decision Tree Regressor showed MAE 0.2059, RMSE 0.2645). We have demonstrated the impact of both model selection and input features on performance. Application of machine learning methods requires careful selection of models and assessed parameters. The computing power of modern computers allows searching for the models most effective in terms of accuracy.


Author(s):  
Tausifa Jan Saleem ◽  
Mohammad Ahsan Chishti

The rapid progress in domains like machine learning, and big data has created plenty of opportunities in data-driven applications particularly healthcare. Incorporating machine intelligence in healthcare can result in breakthroughs like precise disease diagnosis, novel methods of treatment, remote healthcare monitoring, drug discovery, and curtailment in healthcare costs. The implementation of machine intelligence algorithms on the massive healthcare datasets is computationally expensive. However, consequential progress in computational power during recent years has facilitated the deployment of machine intelligence algorithms in healthcare applications. Motivated to explore these applications, this paper presents a review of research works dedicated to the implementation of machine learning on healthcare datasets. The studies that were conducted have been categorized into following groups (a) disease diagnosis and detection, (b) disease risk prediction, (c) health monitoring, (d) healthcare related discoveries, and (e) epidemic outbreak prediction. The objective of the research is to help the researchers in this field to get a comprehensive overview of the machine learning applications in healthcare. Apart from revealing the potential of machine learning in healthcare, this paper will serve as a motivation to foster advanced research in the domain of machine intelligence-driven healthcare.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


2021 ◽  
Vol 3 (2) ◽  
pp. 392-413
Author(s):  
Stefan Studer ◽  
Thanh Binh Bui ◽  
Christian Drescher ◽  
Alexander Hanuschkin ◽  
Ludwig Winkler ◽  
...  

Machine learning is an established and frequently used technique in industry and academia, but a standard process model to improve success and efficiency of machine learning applications is still missing. Project organizations and machine learning practitioners face manifold challenges and risks when developing machine learning applications and have a need for guidance to meet business expectations. This paper therefore proposes a process model for the development of machine learning applications, covering six phases from defining the scope to maintaining the deployed machine learning application. Business and data understanding are executed simultaneously in the first phase, as both have considerable impact on the feasibility of the project. The next phases are comprised of data preparation, modeling, evaluation, and deployment. Special focus is applied to the last phase, as a model running in changing real-time environments requires close monitoring and maintenance to reduce the risk of performance degradation over time. With each task of the process, this work proposes quality assurance methodology that is suitable to address challenges in machine learning development that are identified in the form of risks. The methodology is drawn from practical experience and scientific literature, and has proven to be general and stable. The process model expands on CRISP-DM, a data mining process model that enjoys strong industry support, but fails to address machine learning specific tasks. The presented work proposes an industry- and application-neutral process model tailored for machine learning applications with a focus on technical tasks for quality assurance.


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


Sign in / Sign up

Export Citation Format

Share Document