Length Dependence of Demixing and Micelle Formation in a Model for Tenside-Water Mixtures

1995 ◽  
Vol 5 (1) ◽  
pp. 1-3 ◽  
Author(s):  
D. Stauffer ◽  
D. Woermann
Neuropeptides ◽  
2016 ◽  
Vol 57 ◽  
pp. 71-83 ◽  
Author(s):  
Mohammed Inayathullah ◽  
Aaron Tan ◽  
Rebecca Jeyaraj ◽  
James Lam ◽  
Nam-Joon Cho ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Soichiro Tottori ◽  
Karolis Misiunas ◽  
Vahe Tshitoyan ◽  
Ulrich Keyser

Understanding the diffusive behavior of particles and large molecules in channels is of fundamental importance in biological and synthetic systems, such as channel proteins, nanopores, and nanofluidics. Although theoretical and...


ACS Omega ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 2248-2254 ◽  
Author(s):  
Dirk J. Groenendijk ◽  
Johannes N. M. van Wunnik

2020 ◽  
Vol 18 (1) ◽  
pp. 357-368
Author(s):  
Kaiwen Zheng ◽  
Kai Guo ◽  
Jing Xu ◽  
Wei Liu ◽  
Junlang Chen ◽  
...  

AbstractCatechin – a natural polyphenol substance – has excellent antioxidant properties for the treatment of diseases, especially for cholesterol lowering. Catechin can reduce cholesterol content in micelles by forming insoluble precipitation with cholesterol, thereby reducing the absorption of cholesterol in the intestine. In this study, to better understand the molecular mechanism of catechin and cholesterol, we studied the interaction between typical catechins and cholesterol by the density functional theory. Results show that the adsorption energies between the four catechins and cholesterol are obviously stronger than that of cholesterol themselves, indicating that catechin has an advantage in reducing cholesterol micelle formation. Moreover, it is found that the molecular interactions of the complexes are mainly due to charge transfer of the aromatic rings of the catechins as well as the hydrogen bond interactions. Unlike the intuitive understanding of a complex formed by hydrogen bond interaction, which is positively correlated with the number of hydrogen bonds, the most stable complexes (epicatechin–cholesterol or epigallocatechin–cholesterol) have only one but stronger hydrogen bond, due to charge transfer of the aromatic rings of catechins.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lorenzo Marcucci ◽  
Takumi Washio ◽  
Toshio Yanagida
Keyword(s):  

1989 ◽  
Vol 56 (3) ◽  
pp. 427-433 ◽  
Author(s):  
Charles W. Slattery ◽  
Satish M. Sood ◽  
Pat Chang

SummaryThe association of non-phosphorylated (0-P) and fully phosphorylated (5-P) human β-caseins was studied by fluorescence spectroscopy and laser light scattering. The tryptophan fluorescence intensity (FI) level increased between 20 and 35 °C, indicating a change in the environment of that residue. A similar transition occurred when ANS was used as a probe. Transition temperatures were slightly lower in 10 mM-CaCl2 but were not affected by an equivalent increase in ionic strength caused by NaCl. The magnitude of the FI change was less for the 5-P than the 0-P protein but was increased for both by CaCl2 addition. These FI data were characteristic of a conformational change and this was supported by fluorescence polarization which indicated that with CaCl2, tryptophan and ANS mobility increased at the transition temperature even though the extent of protein association also increased. Light scattering suggested that protein association proeeeded with the primary formation of submicellar aggregates containing 20–30 monomers which then associated further to form particles of minimum micelle size (12–15 submicelles), and eventually larger. The temperature of precipitation of the 5-P form in the presence of CaCl2 was lower than the conformational transition and suggested that both hydrophobic interactions and Ca bridges between phosphate esters on adjacent molecules are important in micelle formation.


Sign in / Sign up

Export Citation Format

Share Document