scholarly journals Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media

2018 ◽  
Vol 52 (3) ◽  
pp. 869-891
Author(s):  
Quentin Ayoul-Guilmard ◽  
Anthony Nouy ◽  
Christophe Binetruy

This paper proposes to address the issue of complexity reduction for the numerical simulation of multiscale media in a quasi-periodic setting. We consider a stationary elliptic diffusion equation defined on a domain D such that D̅ is the union of cells {D̅i}i∈I and we introduce a two-scale representation by identifying any function v(x) defined on D with a bi-variate function v(i,y), where i ∈ I relates to the index of the cell containing the point x and y ∈ Y relates to a local coordinate in a reference cell Y. We introduce a weak formulation of the problem in a broken Sobolev space V(D) using a discontinuous Galerkin framework. The problem is then interpreted as a tensor-structured equation by identifying V(D) with a tensor product space ℝI⊗ V(Y) of functions defined over the product set I × Y. Tensor numerical methods are then used in order to exploit approximability properties of quasi-periodic solutions by low-rank tensors.

2005 ◽  
Vol 05 (04) ◽  
pp. 555-568 ◽  
Author(s):  
INGO BULLA

We consider general second-order linear elliptic partial differential equations having random coefficients and random data and fulfilling the homogeneous Dirichlet condition. We prove the existence and uniqueness of the weak solution in a certain tensor product space which is suitably completed to make it a Hilbert space. The factors of this space are a Sobolev space of functions depending on the space variable and a general Sobolev space of functions depending on the stochastic variable.


2021 ◽  
Vol 5 (2) ◽  
pp. 42
Author(s):  
María A. Navascués ◽  
Ram Mohapatra ◽  
Md. Nasim Akhtar

In this paper, we define fractal bases and fractal frames of L2(I×J), where I and J are real compact intervals, in order to approximate two-dimensional square-integrable maps whose domain is a rectangle, using the identification of L2(I×J) with the tensor product space L2(I)⨂L2(J). First, we recall the procedure of constructing a fractal perturbation of a continuous or integrable function. Then, we define fractal frames and bases of L2(I×J) composed of product of such fractal functions. We also obtain weaker families as Bessel, Riesz and Schauder sequences for the same space. Additionally, we study some properties of the tensor product of the fractal operators associated with the maps corresponding to each variable.


2013 ◽  
Vol 52 (7S) ◽  
pp. 07HF01 ◽  
Author(s):  
Ryuta Narumi ◽  
Kosuke Matsuki ◽  
Shigeru Mitarai ◽  
Takashi Azuma ◽  
Kohei Okita ◽  
...  

2013 ◽  
Vol 13 (4) ◽  
pp. 985-1012 ◽  
Author(s):  
Guillaume Chiavassa ◽  
Bruno Lombard

AbstractNumerical methods are developed to simulate the wave propagation in heterogeneous 2D fluid/poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot’s equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-posedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time- marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot’s theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach.


2021 ◽  
Author(s):  
Jingyu Jiang ◽  
Ke Zhao ◽  
Yuanping Cheng ◽  
Shaojie Zheng ◽  
Shuo Zhang ◽  
...  

Abstract To study the effect of magma intrusion on the thermal evolution of low-rank coal with high water content, the mathematical relationship between water content variation and thermal conductivity of low-rank coal was analyzed by COMSOL Multiphysics numerical simulation and field validation. Taking Daxing Mine in Tiefa coalfield as the research background, the effects of magma finite time intrusion mechanism and water volatilization in coal on thermal evolution and organic maturity of coal seam are investigated in this paper. The results show that as the sill thickness increases, the thermal evolution temperature of the coal seam increases, the required thermal evolution time increases and the final retention temperature increases after the coal seam is cooled down. Approaching the magma, the maximum temperature that the coal seam can reach increases, the maximum temperature lasts longer, and the final temperature retained by the coal seam becomes higher. The increase of water content of coal makes the thermal conductivity increase, and the rate of heat transfer from coal seam is accelerated, and more heat is transferred to distant places in the same time. At the same time, the heat lost by the magma in the same time increases, the time required for the cooling of the magma decreases, and the maximum temperature reached by the underlying coal seam is significantly lower. The presence of moisture weakens the thermal evolution of the magma to the coal seam and reduces the expected maturity of the coal. The results of average random vitrinite reflectance (Ro) and moisture examination of coal samples collected at the Daxing Mine site verified the numerical simulation results of magma thermal evolution.


2018 ◽  
Vol 180 ◽  
pp. 02093
Author(s):  
Smyk Emil ◽  
Mrozik Dariusz ◽  
Olszewski Łukasz ◽  
Peszyński Kazimierz

Determining of minor losses coefficient is very complicated problem. Analytical methods are often very difficult and experimental methods are very expensive and time-consuming. Consequently, the use of numerical methods seems to be a good solution, but there are no publications describing this issue. Therefore, the paper is describing the numerical method of determining the minor loss coefficient ξ on the example of elbows with circular cross-section.


Sign in / Sign up

Export Citation Format

Share Document