A parameter-robust iterative method for Stokes–Darcy problems retaining local mass conservation

2020 ◽  
Vol 54 (6) ◽  
pp. 2045-2067
Author(s):  
Wietse M. Boon

We consider a coupled model of free-flow and porous medium flow, governed by stationary Stokes and Darcy flow, respectively. The coupling between the two systems is enforced by introducing a single variable representing the normal flux across the interface. The problem is reduced to a system concerning only the interface flux variable, which is shown to be well-posed in appropriately weighted norms. An iterative solution scheme is then proposed to solve the reduced problem such that mass is conserved at each iteration. By introducing a preconditioner based on the weighted norms from the analysis, the performance of the iterative scheme is shown to be robust with respect to material and discretization parameters. By construction, the scheme is applicable to a wide range of locally conservative discretization schemes and we consider explicit examples in the framework of Mixed Finite Element methods. Finally, the theoretical results are confirmed with the use of numerical experiments.

Author(s):  
W. M. Boon ◽  
J. M. Nordbotten

Abstract We consider mechanics of composite materials in which thin inclusions are modeled by lower-dimensional manifolds. By successively applying the dimensional reduction to junctions and intersections within the material, a geometry of hierarchically connected manifolds is formed which we refer to as mixed-dimensional. The governing equations with respect to linear elasticity are then defined on this mixed-dimensional geometry. The resulting system of partial differential equations is also referred to as mixed-dimensional, since functions defined on domains of multiple dimensionalities are considered in a fully coupled manner. With the use of a semi-discrete differential operator, we obtain the variational formulation of this system in terms of both displacements and stresses. The system is then analyzed and shown to be well-posed with respect to appropriately weighted norms. Numerical discretization schemes are proposed using well-known mixed finite elements in all dimensions. The schemes conserve linear momentum locally while relaxing the symmetry condition on the stress tensor. Stability and convergence are shown using a priori error estimates and confirmed numerically.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


2007 ◽  
Vol 64 (6) ◽  
pp. 1794-1810 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
Michael E. McIntyre

The effects of enforcing local mass conservation on the accuracy of non-Hamiltonian potential-vorticity- based balanced models (PBMs) are examined numerically for a set of chaotic shallow-water f-plane vortical flows in a doubly periodic square domain. The flows are spawned by an unstable jet and all have domain-maximum Froude and Rossby numbers Fr ∼0.5 and Ro ∼1, far from the usual asymptotic limits Ro → 0, Fr → 0, with Fr defined in the standard way as flow speed over gravity wave speed. The PBMs considered are the plain and hyperbalance PBMs defined in Part I. More precisely, they are the plain-δδ, plain-γγ, and plain-δγ PBMs and the corresponding hyperbalance PBMs, of various orders, where “order” is related to the number of time derivatives of the divergence equation used in defining balance and potential-vorticity inversion. For brevity the corresponding hyperbalance PBMs are called the hyper-δδ, hyper-γγ, and hyper-δγ PBMs, respectively. As proved in Part I, except for the leading-order plain-γγ each plain PBM violates local mass conservation. Each hyperbalance PBM results from enforcing local mass conservation on the corresponding plain PBM. The process of thus deriving a hyperbalance PBM from a plain PBM is referred to for brevity as plain-to-hyper conversion. The question is whether such conversion degrades the accuracy, as conjectured by McIntyre and Norton. Cumulative accuracy is tested by running each PBM alongside a suitably initialized primitive equation (PE) model for up to 30 days, corresponding to many vortex rotations. The accuracy is sensitively measured by the smallness of the ratio ϵ = ||QPBM − QPE||2/||QPE||2, where QPBM and QPE denote the potential vorticity fields of the PBM and the PEs, respectively, and || ||2 is the L2 norm. At 30 days the most accurate PBMs have ϵ ≈ 10−2 with PV fields hardly distinguishable visually from those of the PEs, even down to tiny details. Most accurate is defined by minimizing ϵ over all orders and truncation types δδ, γγ, and δγ. Contrary to McIntyre and Norton’s conjecture, the minimal ϵ values did not differ systematically or significantly between plain and hyperbalance PBMs. The smallness of ϵ suggests that the slow manifolds defined by the balance relations of the most accurate PBMs, both plain and hyperbalance, are astonishingly close to being invariant manifolds of the PEs, at least throughout those parts of phase space for which Ro ≲ 1 and Fr ≲ 0.5. As another way of quantifying the departures from such invariance, that is, of quantifying the fuzziness of the PEs’ slow quasimanifold, initialization experiments starting at days 1, 2, . . . 10 were carried out in which attention was focused on the amplitudes of inertia–gravity waves representing the imbalance arising in 1-day PE runs. With balance defined by the most accurate PBMs, and imbalance by departures therefrom, the results of the initialization experiments suggest a negative correlation between early imbalance and late cumulative error ϵ. In such near-optimal conditions the imbalance seems to be acting like weak background noise producing an effect analogous to so-called stochastic resonance, in that a slight increase in noise level brings PE behavior closer to the balanced behavior defined by the most accurate PBMs when measured cumulatively over 30 days.


Author(s):  
T. M Kyrke-Smith ◽  
R. F Katz ◽  
A. C Fowler

Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.


Author(s):  
P. A. Beau ◽  
T. Me´nard ◽  
R. Lebas ◽  
A. Berlemont ◽  
S. Tanguy ◽  
...  

The main objective of our work is to develop direct numerical simulation tools for the primary break up of a jet. Results can help to determine closure relation in the ELSA model [1] which is based on a single-phase Eulerian model and on the transport equation for the mean liquid/gas interface density in turbulent flows. DNS simulations are carried out to obtain statistical information in the dense zone of the spray where nearly no experimental data are available. The numerical method should describe the interface motion precisely, handle jump conditions at the interface without artificial smoothing, and respect mass conservation. We develop a 3D code [2], where interface tracking is ensured by Level Set method, Ghost Fluid Method [3] is used to capture accurately sharp discontinuities, and coupling between Level Set and VOF methods is used for mass conservation [4]. Turbulent inflow boundary conditions are generated through correlated random velocities with a prescribed length scale. Specific care has been devoted to improve computing time with MPI parallelization. The numerical methods have been applied to investigate physical processes that are involved in the primary break up of an atomizing jet. The chosen configuration is close as possible of Diesel injection (Diameter D = 0.1 mm, Velocity = 100m/s, Liquid density = 696kg/m3, Gas density = 25kg/m3). Typical results will be presented. From the injector nozzle, the turbulence initiates some perturbations on the liquid surface, that are enhanced by the mean shear between the liquid jet and the surrounding air. The interface becomes very wrinkled and some break-up is initiated. The induced liquid parcels show a wide range of shapes. Statistics are carried out and results will be provided for liquid volume fraction, liquid/gas interface density, and turbulent correlations.


2003 ◽  
Vol 208 ◽  
pp. 411-412
Author(s):  
Yusuke Imaeda ◽  
Shu-ichiro Inutsuka

Smoothed particle hydrodynamics (SPH) is one of the widely used methods to calculate the various astrophysical fluid dynamics. However, standard SPH cannot accurately describe the long-term evolution of shear flows: The large density error emerges within a dynamical timescale, and the amplitude of the error becomes larger than the value of density itself (Δρ ≳ ρ), when we take the mean separation of the particles as the smoothing length. The origin of error is due to the inaccurate description of the continuity equation in the standard SPH formalism. To ensure the local mass conservation property, we have reformulated SPH, in which we distinguish the particle velocity and the fluid velocity for the updation of the particle positions. We find that the present modification provides an accurate description of the density evolution in SPH.


2018 ◽  
Vol 7 (3) ◽  
pp. 6657
Author(s):  
Atika RADID ◽  
Karim RHOFIR

Generally, chemical reactions from atmospheric chemistry models are described by a strongly coupled, stiff and nonlinear system of ordinary differential equations, which requires a good numerical solver. Several articles published about the solvers of chemical equations, during the numerical simulation, indicate that one renders the concentration null when it becomes negative. In order to preserve the positivity of the exact solutions, recent works have proposed a new solver called Modified-Backward-Euler (MBE). To improve this solver, we propose in this paper an iterative numerical scheme witch is better fitted to stiff problems. This new approach, called Iterative-Modified-Backward-Euler (IMBE), is based on iterative solution of the P-L structure of the implicit nonlinear ordinary differential equations on each time step. The efficiency of the iteration process is increased by using the Gauss and Successive-Over-Relaxation (SOR). In the case of fast/slow chemical kinetic reactions, we proposed an other variant called Iterative-Quasi-Steady-State-Approximation (IQSSA). The numerical exploration of stiff test problem shows clearly that this formalism is applicable to a wide range of chemical kinetics problems and give a good approximation compared to the recent solver. The numerical procedures give reasonable accurate solutions when compared to exact solution.Generally, chemical reactions from atmospheric chemistry models are described by a strongly coupled, stiff and nonlinear system of ordinary differential equations, which requires a good numerical solver. Several articles published about the solvers of chemical equations, during the numerical simulation, indicate that one renders the concentration null when it becomes negative. In order to preserve the positivity of the exact solutions, recent works have proposed a new solver called Modified-Backward-Euler (MBE). To improve this solver, we propose in this paper an iterative numerical scheme witch is better fitted to stiff problems. This new approach, called Iterative-Modified-Backward-Euler (IMBE), is based on iterative solution of the P-L structure of the implicit nonlinear ordinary differential equations on each time step. The efficiency of the iteration process is increased by using the Gauss and Successive-Over-Relaxation (SOR). In the case of fast/slow chemical kinetic reactions, we proposed an other variant called Iterative-Quasi-Steady-State-Approximation (IQSSA). The numerical exploration of stiff test problem shows clearly that this formalism is applicable to a wide range of chemical kinetics problems and give a good approximation compared to the recent solver. The numerical procedures give reasonable accurate solutions when compared to exact solution.


2019 ◽  
Vol 12 (7) ◽  
pp. 2727-2765 ◽  
Author(s):  
Hiroaki Tatebe ◽  
Tomoo Ogura ◽  
Tomoko Nitta ◽  
Yoshiki Komuro ◽  
Koji Ogochi ◽  
...  

Abstract. The sixth version of the Model for Interdisciplinary Research on Climate (MIROC), called MIROC6, was cooperatively developed by a Japanese modeling community. In the present paper, simulated mean climate, internal climate variability, and climate sensitivity in MIROC6 are evaluated and briefly summarized in comparison with the previous version of our climate model (MIROC5) and observations. The results show that the overall reproducibility of mean climate and internal climate variability in MIROC6 is better than that in MIROC5. The tropical climate systems (e.g., summertime precipitation in the western Pacific and the eastward-propagating Madden–Julian oscillation) and the midlatitude atmospheric circulation (e.g., the westerlies, the polar night jet, and troposphere–stratosphere interactions) are significantly improved in MIROC6. These improvements can be attributed to the newly implemented parameterization for shallow convective processes and to the inclusion of the stratosphere. While there are significant differences in climates and variabilities between the two models, the effective climate sensitivity of 2.6 K remains the same because the differences in radiative forcing and climate feedback tend to offset each other. With an aim towards contributing to the sixth phase of the Coupled Model Intercomparison Project, designated simulations tackling a wide range of climate science issues, as well as seasonal to decadal climate predictions and future climate projections, are currently ongoing using MIROC6.


2017 ◽  
Author(s):  
Feng Zhang ◽  
Arif S. Malik

Continuously Variable Crown (CVC) shifting mechanisms represent a control technology with wide range of capability to influence the thickness profile and flatness (shape) of metal strip and sheet in rolling-type manufacturing processes. Further, because of the efficiency and extensive control capability to operate on thin-gauge, high-strength ferrous alloys, the 6-high mill with CVC profiles machined onto the intermediate rolls (IR) represents a popular mill configuration. This is because of the large control range for the strip thickness profile and flatness, which results from lateral shifting of the CVC intermediate rolls. However, together with this efficiency and capability comes very complex contact behaviors between the rolls and strip, including highly non-linear contact force distribution, loss of contact, asymmetric roll wear, unwanted strip wedge profiles, and the need to apply corrective roll tilting. Therefore, for most effective industry use of 6-high mills with intermediate roll CVC shifting, a rapid and accurate mathematical rolling model is needed to predict and account for these complex contact behaviors. This paper introduces an efficient roll-stack computational model capable of simulating such rolling mills under steady-state conditions. The model formulation applies the simplified mixed finite element method (SM-FEM), which is adapted to simulate asymmetric 6-high CVC mill contact behaviors. Results for a specific case study compare favorably to those obtained from a large-scale commercial finite element simulation, yet require a small fraction of the associated computational time and effort.


2020 ◽  
Author(s):  
Juan Pablo Aguilar-Lopez ◽  
Manuel Wewer ◽  
Thom Bogaard ◽  
Matthijs Kok

<p>Backward piping erosion (BEP) is a highly complex erosive process which occurs on granular soils when large head differences are exerted. This process represents a significant threat to dams and levees stability and therefore a large part of the design and reliability assessment of these water retaining structures is devoted to this single process. Several authors have achieved great accuracy in predicting the critical head difference that triggers the process but not so much has been studied regarding the time of occurrence and the duration of the erosive process.  In the present study we propose a 2D finite element model for which not only the critical head difference can be predicted but also the development of the erosive process in time. This was achieved by coupling the 2D Darcy partial differential equation with Exner’s 1D sediment transport mass conservation equation. Different laminar sediment transport rate empirical models were tested and used as inputs in the coupled model. To test the performance of the proposed model, the IJkdijk real scale experiment for piping erosion was simulated. The results show that the model is capable of predicting not only the critical head and its progression in time but also specific events of the process such as the instants of start of the erosion and the  complete seepage length development . An important conclusion of the study is that from several transport empirical formulas tested, the model from Yalin which is widely recognized by the sediment transport community performs the best.</p>


Sign in / Sign up

Export Citation Format

Share Document