scholarly journals Experimental studies of a single flexibly-mounted rod in a triangular rod bundle in cross-flow

2018 ◽  
Vol 148 ◽  
pp. 09002
Author(s):  
Sabine Upnere ◽  
Normunds Jekabsons ◽  
Sergejs Dementjevs ◽  
Michael Wohlmuther

Experiments on flow-induced vibrations using a closely-packed triangular rod array with a pitch-todiameter ratio of 1.1 in water cross-flow was carried out at Paul Scherrer Institute. The bundle consists of 21 row of five rods in each one. Single flexibly-mounted test rod (TR) is in the fourth row in an otherwise fixed array. The test rod can freely move in the transverse and in-line direction. Two accelerometer sensors were attached at both ends of the TR to measure the rod response on the fluid flow. The effect of flow rate on the stability of the flexibly-mounted TR has been analysed. During experiments, it reveals a set of conditions and tendencies for the flow-induced vibration in the closely-packed multi-rod system.

Author(s):  
Dong Seok Oh ◽  
Wang Kee In ◽  
Tae Hyun Chun

An experiment was performed in a wind tunnel to investigate the flow structure in a rod bundle with a hybrid vane grid. The hybrid vane is a flow-mixing device, which consists of two pairs of primary and secondary vanes in a cell. The test section is a rectangular channel (300 mm × 300 mm × 2400 mm) including 3 × 3 rod (75 mm diameter) array with a spacer grid. The pitch to diameter ratio of the rod array is 1.33. The flow structures downstream the grid are measured at Reynolds number of 1.2 × 105 for 35-degree deflecting angle of the hybrid flow-mixing vane. The data are obtained for the distributions of the time mean axial velocity, lateral velocity, and turbulent intensities in 3 component directions over a center subchannel along axial locations and compared with the previous results of split vane grid that has two vanes in a cell. The results show that the mixing efficiency of the hybrid vane grid could be similar with that of the split vane grid because swirl factor of the hybrid vane grid is higher than that of split vane grid and the magnitude of axial turbulent intensity, turbulent diffusion coefficient, and cross flow factor is similar to each other in spite of differences of the vane numbers and shape in a cell between hybrid and split vane grids.


Author(s):  
Per Nilsson ◽  
Eric Lillberg

This work deals with risk areas for flow induced vibration at extended power uprate, EPU. The focus is on the mechanisms of excitation in one phase relevant for Swedish BWRs and PWRs. FIV-events that have occurred in nuclear power plants over the world have been collected and categorized. The most relevant events for EPU are summarized to: vibrations in steam systems due to turbulence or vortex shedding and resonance, vibrations of internal parts and also thermal mixers and sleeves or in valves and vibrations of tube banks in partial or full cross flow. Based on the collected events and some semi-empirical methods, a simple search list for FIV by power uprate has been developed. In principle these changes lead to increased risks: changed flow velocity, decreased water temperature and increased steam temperature and decreased structural damping, mass or stiffness. In addition to that, the typical collected events should be regarded.


2015 ◽  
Author(s):  
Shuai Meng ◽  
Hiroyuki Kajiwara ◽  
Narakorn Srinil

To avoid or mitigate global warming, several ocean carbon capture and storage concepts have been proposed. One of the recent approaches is to dispose carbon dioxide via a fixed vertical cantilevered pipe onto the seabed in deep waters. Due to a high aspect ratio and flexibility of such long pipe conveying fluid with fixed-free end conditions and external hydrodynamic loading caused by currents, the pipe may experience large-amplitude 3-D vibrations leading to structural failure. Hence, it is essential to understand and investigate the pipe nonlinear dynamic behaviors subject to combined flow-induced vibration (FIV) and vortex-induced vibration (VIV). In this study, the 3-D nonlinear equations of a cantilevered pipe discharging fluid in the sea are analyzed using a Galerkin-based multi modal approach combined with a finite difference Houbolt’s integration scheme. Particular attention is paid to the combined effects of FIV and VIV on the dynamic response of the cantilevered pipe in water. To model the fluctuating lift and drag forces associated with VIV, the two dimensional wake oscillators distributed along the pipe are adopted. Numerical simulations in the FIV case of a pipe discharging fluid in the air are first validated with experimental results in the literature to justify the mathematical models and numerical approaches. Modal convergence analysis is also performed. Results in the combined FIV and VIV cases are then highlighted in order to show the effects of cross-flow and in-line VIV when compared with the pure FIV case. The effects of geometric nonlinearities, the coupling/interaction of multi modes and the space-time modifications of pipe responses and trajectories are highlighted. It is hoped that the numerical observations and findings obtained from this study could be verified by experimental studies which are presently lacking in the literature.


1993 ◽  
Vol 115 (4) ◽  
pp. 206-212 ◽  
Author(s):  
S. J. Price ◽  
M. P. Pai¨doussis ◽  
A. M. Al-Jabir

Previous experiments on a five-riser cluster in steady cross-flow have indicated that for certain orientations of the cluster the peripheral, or wing, risers can undergo violent flow-induced vibrations. It was shown that these vibrations were not due to vortex shedding; furthermore, it was suggested that they are due to a classical self-excited fluidelastic instability. In the present paper, a previously developed quasi-steady fluidelastic stability analysis for a group of circular cylinders in steady crossflow is modified to enable the stability of a flexible riser in a five-riser bundle to be analyzed. As input to the theoretical model, the static fluid force coefficients on a peripheral riser, and the manner in which they vary with displacement, are required. These were measured for a number of orientations of the cluster with respect to the free-stream current, using a wind tunnel model. Using this data in the analysis, the stability of a five-riser cluster was investigated. Instability is predicted to occur for the same orientations of the riser as obtained from the experimental results; however, the quantitative agreement between experimental and theoretical critical flow velocities for instability to occur is not as good. Theory also predicts the system to be stable for those orientations where no instability was obtained experimentally.


Author(s):  
Y. A. Khulief ◽  
S. A. Said

It has been recognized that modeling of the complex dynamics of fluidelastic forces, that give rise to vibrations of tube bundles, requires a comprehensive dynamic model of high fidelity based on experimental insight. Accordingly, the prediction of the flow-induced vibration due to unsteady cross-flow can be greatly aided by semi-analytical models, in which some coefficients are determined experimentally. In this paper, the elastodynamic model of the tube array is formulated using the finite element approach, wherein each tube is modeled by a set of finite tube-elements. The interaction between tubes in the bundle is represented by fluidelastic coupling forces, which are defined in terms of the multi-degree-of-freedom elastodynamic behavior of each tube in the bundle. A laboratory test rig with an instrumented square bundle is constructed to measure the fluidelastic coefficients used to tune the developed dynamic model. The test rig admits two different test bundles; namely the inline-square and 45° rotated-square tube arrays. Measurements were conducted to identify the flow-induced dynamic coefficients. The developed scheme was utilized in predicting the onset of flow-induced vibrations, and results were examined in the light of TEMA predictions. The comparison demonstrated that TEMA guidelines are more conservative in the two configurations considered.


Author(s):  
Atsushi Enya ◽  
Atsushi Okajima

It is important for industrial purposes to predict flow-induced vibration of a bluff body elastically supported in an uniform flow. In this paper, the free oscillation of a rectangular cylinder with two-degree of freedom in the streamwise (in-line) and cross-flow (transverse) directions in a uniform flow, was computed by the Large Eddy Simulation (LES) method at high Reynolds number of 2.2 × 104. The Smagorinsky model was used as a subgrid scale (SGS) model. The main objectives of this work were to predict and estimate characteristics of flows around a free-oscillating cylinder. The present computations successfully reproduce various types of flow-induced vibrations of a free-oscillating rectangular cylinder as found by experiments; in-line oscillation, eddy-excitation and low-velocity galloping.


Author(s):  
Sameh Darwish ◽  
Abdallah Hadji ◽  
Huy-Peter Pham ◽  
Njuki W. Mureithi ◽  
Minki Cho

Abstract This paper investigates the flow-induced vibration (FIV) and possibility of fluidelastic instability occurrence in a rotated square geometry tube array through a series of experimental tests. All experiments presented here were conducted in water cross-flow. The array pitch spacing ratio of approximately P/D=1.64 is somewhat larger than that commonly found in typical steam generators. The stability of a single flexible tube as well as multiple flexible tubes were investigated. The tubes were free to vibrate purely in the streamwise direction or the transverse direction relative to the upstream flow. A single flexible tube, in the otherwise rigid tube array, was found to undergo large amplitude vibrations (up to 40 % D) in the transverse direction. Tube vibration frequency analysis indicated the presence of two frequency components related to vorticity shedding in the array. This potential vorticity-induced-vibrations (VIV) and potential coupling between VIV and FEI are discussed in the paper. Test results for streamwise flow-induced vibrations are also presented. Results in water flow show a possible effect related to flow periodicity at low velocity. At significantly high flow velocities, the tubes are found to fully restabilize. This restabilization after VIV locking has not been previously reported as an unlocking result. The present results suggest that the flow-induced vibration of tubes in a rotated square array configuration is significantly more complex than in other geometries, particularly for the streamwise vibration case.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
S. A. Al-Kaabi ◽  
Y. A. Khulief ◽  
S. A. Said

It has become evident that the modeling of the complex dynamics of fluidelastic forces that give rise to vibrations of tube bundles requires a great deal of experimental insight. Accordingly, the prediction of the flow-induced vibration due to unsteady cross-flow can be greatly aided by semi-analytical models, in which some coefficients are determined experimentally. A laboratory test rig with an instrumented test bundle is constructed to measure the fluidelastic coefficients to be used in conjunction with the mathematical model derived in Part I of this paper. The test rig admits two different test bundles, namely, the inline-square and 45deg rotated-square tube arrays. Measurements were conducted to identify the flow-induced dynamic coefficients. The developed scheme was utilized in predicting the onset of flow-induced vibrations in two configurations of tube bundles, and results were examined in the light of Tubular Exchange Manufacturers Association (TEMA) predictions. The comparison demonstrated that TEMA guidelines are more conservative in the two configurations considered.


2021 ◽  
Vol 11 (8) ◽  
pp. 3444
Author(s):  
Sergey A. Lavrenko ◽  
Dmitriy I. Shishlyannikov

The authors focus on the process of potash ore production by a mechanized method. They show that currently there are no approved procedures for assessing the performance of heading-and-winning machines operating in the conditions of potash mines. This causes difficulties in determining the field of application of heading-and-winning machines, complicates the search for implicit technical solutions for the modernisation of existing models of mining units, prohibits real-time monitoring of the stability of stope-based technological processes and makes it difficult to assess the performance of the services concerning mining enterprises. The work represents an aggregate assessment of the performance of heading-and-winning machines for potash mines by determining complex indicators describing the technological and technical levels of organising the work in stopes. Such indicators are the coefficients of productivity and energy efficiency, respectively. Experimental studies have been carried out in the conditions of the potash mine of the Verkhnekamskoye potassium-magnesium salt deposit to assess the performance of the latest and most productive Ural-20R heading-and-winning machines manufactured in Russia. Using the above methodological approaches, this paper shows that the unsatisfactory technological performance of the studied machine is due to the low productivity of the mine district transport. The average productivity coefficient was 0.29. At the same time, high values of the energy efficiency coefficient show that the productivity of the machine is on par with design conditions.


Sign in / Sign up

Export Citation Format

Share Document