scholarly journals Mechanical behavior of the reinforced concrete frame with masonry filling Comportement mécanique des portiques en béton armé avec remplissage en maçonnerie

2018 ◽  
Vol 149 ◽  
pp. 02062
Author(s):  
Jalal Kettar ◽  
Khadija Baba ◽  
Abderrahman Nounah ◽  
Lahcen Bahi

Masonry is often used in the most of reinforced concrete structure constructions as a filling material that is important on structural characteristics. Structural contribution in the calculations was neglected or misunderstood, mainly due to the lack of a practical calculation methods and an appropriate regulatory tool. The analysis of frames filled with masonry is very complex. This complexity is linked from one part to the difference in the nature of elements and its behavior that make up the masonry itself (brick and mortar) and their interaction, and on the other part, for the large dispersion that characterizes the bricks as well as the execution's quality parameters which make it difficult to define reliable criteria for the masonry. The objective of this work is to experimentally highlight the influence of the hollow brick masonry filler, commonly used in Morocco, on reinforced concrete frames subject to lateral stresses, to deepen understanding the seismic behavior of the masonry structures by evaluating the structural performance of a specimen wall. These experimental results will be compared to those found by modeling prototypes, using SAP 2000 software, based on various approaches and models as well as other results deduced from the other researchers. The experimental study was carried out according to standard NF EN 1052-3 on two reinforced concrete frames, of dimensions (2m X 1.6m), the one with the masonry filling, and the other without filling in order to determine the initial characteristic resistance to the shearing of the masonry walls. The obtained results showed that a filling has a beneficial effect on rigidity which can be doubled compared to an empty frame. in the same way the lateral resistance. But this effect is much contrasted; it depends a lot on the characteristics essentially of the materials (bricks and concrete). This is the main reason, which justifies the divergence of the results deduced from the nine models that we used.

2013 ◽  
Vol 353-356 ◽  
pp. 2357-2361
Author(s):  
Yong Jun Liu ◽  
Yang Yang Liu ◽  
Ran Bi ◽  
Jing Hai Zhou

In general, reinforced concrete frames have excellent fire resistance properties, but more and more concrete buildings collapsed in fires. The majority of past research work on the response of concrete building to fire has looked at the effects of fire upon individual structural members, and most commonly when subjected to heating from standard fire tests. At present, the fire behaviors of whole reinforced concrete frame are not adequately understood. There is a great need for development of models which consider the effects of fire on the whole structure under more realistic heating regimes. There is also a fundamental requirement for further large-scale testing of concrete structures, to observe the behavior of whole concrete structures in real fires and also for validation of advanced computer analysis tools. Accuracy and efficiency are two major concerns in finite element analysis of structural response of concrete frames in fires. In this paper, a multi-type finite elements hybrid model for simulating structural behavior of whole reinforced concrete frames in real fire is suggested.


2017 ◽  
Vol 21 (9) ◽  
pp. 1388-1401 ◽  
Author(s):  
Foad Mohajeri Nav ◽  
Nima Usefi ◽  
Reza Abbasnia

A simplified theoretical model is developed in the present study in order to predict the general behavior and resistance of reinforced concrete frames under column removal scenarios. The proposed model defines the load–deflection response of the middle joint above the removed column based on a four-stage procedure: classical beam mechanism stage, arching stage, transient stage, and catenary stage. A comprehensive evaluation study using two validation approaches is performed in order to investigate the reliability of the introduced model. For validation of theoretical model, the results of a comprehensive finite element method and experimental data were utilized and the results were compared with the theoretical model. The results demonstrated that the proposed theoretical procedure can establish a reliable foundation for progressive collapse assessment of reinforced concrete frame structures. The proposed model can also predict behavior of symmetrical frames, and this was validated by good agreement between finite element results and the results of the proposed numerical model.


2000 ◽  
Vol 3 (3) ◽  
pp. 255-262 ◽  
Author(s):  
Y.L. Mo ◽  
S.F. Perng

Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and low-rise shearwalls are governed by shear. If a structure includes both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete framed shearwalls is very limited. The experiments on framed shearwalls made of corrugated steel was recently reported. It was found that the ductility of framed shearwalls can be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. If the thickness of the corrugated steel wall is too large when compared to the surrounding frame, the ductility will be reduced. It is shown in this paper that the fiber-reinforced plastic composites can be used to strengthen the critical regions of the reinforced concrete frames, so that the seismic behavior (including ductility and energy dissipation capability) is greatly improved.


Author(s):  
Sergiu-Gheorghe Țere ◽  
Bogdan Hegheș ◽  
Horea Constantinescu

It is well-known that for single-storey steel structures, the framework is greatly strengthened and stiffened following the attachment of the roof, floors and walls. The panels in the roofing, flooring and side cladding are also known as “shear diaphragms” by virtue of their resistance to being deformed into parallelograms. This has been verified by on-site practical experience of many structures and design provisions are available for structural engineers. Despite the fact that for single-storey structures, the corrugated steel sheets are the standard elements in constructing the envelopes, in what concerns the reinforced concrete frames there are no guidelines nor recommendations on how to consider the diaphragm effect in structural analysis. In order to better understand the interaction between the corrugated steel sheets and the reinforced concrete frame, a real precast reinforced concrete frame structure was built for experimental testing. The aim of the experimental test is to study the diaphragm effect for reinforced concrete structures and based on the results to identify the discrepancies identified compared to steel structures. The investigation attempts to provide a starting point for future research on the stressed skin design acting on reinforced concrete frames. At the end of the article conclusions are drawn based on the experience obtained during the experimental test.


2005 ◽  
Vol 32 (4) ◽  
pp. 283-317
Author(s):  
Dusan Kovacevic

Objective of the presented research is the formulation of one enough sophisticated and, for engineering practice, convenient finite element method (FEM) based numerical model for reinforced concrete frames loaded by seismic actions. For modeling of concrete and steel nonlinear behavior uniaxial constitutive rules are applied. The proposal for inclusion the frame joint deterioration, as well as, interaction of shear and flexural forces (inclined cracks effects), in this model, is given additionally. The results of few numerical tests (linear/nonlinear analysis of reinforced concrete frame loaded by three seismic actions) are given as an illustration of presented theoretical research.


2020 ◽  
Vol 87 (1) ◽  
pp. 92-100 ◽  
Author(s):  
N.V. FEDOROVA ◽  
◽  
FAN DINH GUOK ◽  
NGUYEN THI CHANG ◽  
◽  
...  

Author(s):  
Seung-Jae Lee ◽  
Tae-Sung Eom ◽  
Eunjong Yu

AbstractThis study analytically investigated the behavior of reinforced concrete frames with masonry infills. For the analysis, VecTor2, a nonlinear finite element analysis program that implements the Modified Compression Field Theory and Disturbed Stress Field Model, was used. To account for the slip behavior at the mortar joints in the masonry element, the hyperbolic Mohr–Coulomb yield criterion, defined as a function of cohesion and friction angle, was used. The analysis results showed that the lateral resistance and failure mode of the infilled frames were significantly affected by the thickness of the masonry infill, cohesion on the mortar joint–brick interface, and poor mortar filling (or gap) on the masonry boundary under the beam. Diagonal strut actions developed along two or three load paths on the mortar infill, including the backstay actions near the tension column and push-down actions near the compression columns. Such backstay and push-down actions increased the axial and shear forces of columns, and ultimately affect the strength, ductility, and failure mode of the infilled frames.


Sign in / Sign up

Export Citation Format

Share Document