scholarly journals An Electro-Hydraulic Servo with Intelligent Control Strategy

2018 ◽  
Vol 150 ◽  
pp. 01016 ◽  
Author(s):  
Saeed Mohammed ◽  
Chong Chee Soon ◽  
Rozaimi Ghazali ◽  
Ahmad Anas Yusof ◽  
Yahaya Md Sam ◽  
...  

Versatile engineering applications have been developed to assist, reduce, and avoid human being from any heavy or harmful manufacturing processes. The gradually increased demand in force and position controls have simultaneously increased the usage of Electro-Hydraulic Servo (EHS) system. However, the time varying characteristics such as high-speed, outburst starting and stopping dynamic have led the EHS system to suffer from uncertainties and nonlinearities effects. Therefore, in order to enhance the performance of an EHS to surmount the uncertain and nonlinear effects, a hybrid Fuzzy-PID control strategy is developed which particularly improve the accuracy of the system by enhancing the control performance during the positioning tracking. By measuring the performance of the proposed control approach, the transient response and steady-state analysis will be performed which taking linear and intelligent control strategies as the references in the assessment process. The finding indicates the capability of a hybrid Fuzzy-PID controller in reducing the control effort applied to the EHS system.

2014 ◽  
Vol 672-674 ◽  
pp. 135-139 ◽  
Author(s):  
Yun Bo Zhang

Based on the mathematical model of the three-phase two-stage PV grid inverter, the fuzzy-PID control strategy is applied in the grid connected control of PV system in this paper. The purpose of the intelligent control of photovoltaic grid connected inverter has been achieved. The digital simulation and physical simulation show that the fuzzy-PID control strategy can improve the PV system grid control dynamic process and get the smooth connection of the PV system with the power grid. At the same time, the harmonic pollution on the grid has been significantly reduced.


2013 ◽  
Vol 819 ◽  
pp. 229-233
Author(s):  
Zhong Liu ◽  
Jia Chen ◽  
Kai Zhang

Proposition of a high-speed switching valve pilot control of two-cylinder two-way electro-hydraulic synchronous drive system, the establishment of a mathematical model of the system, and using fuzzy PID control strategy designed controller, at the same time building a electro-hydraulic synchronization system simulation model based on fuzzy PID controller . Simulation results show that ,when using the fuzzy PID control strategy, slave cylinder of the synchronization system follow the initiative cylinder movement well, the peak-to-average speed of the slave cylinder is 20.3mm / s. Fuzzy PID control process according to the operating conditions change error and error change, by which it has automatic adjustment of PID parameters of the synchronization system. Therefore, fuzzy PID control has better adaptive ability, and the synchronization error is 0.04 mm, achieving high synchronization accuracy. Verifying that high-speed switching valve pilot control of the synchronous drive system and its control strategy is feasible.


2020 ◽  
Vol 10 (24) ◽  
pp. 9127
Author(s):  
Xiaopeng Yan ◽  
Baijin Chen

This paper proposes an electro-hydraulic servo control method and realizes the automatic control and remote control of free forging hammers for the first time. A configuration and control strategy for the program-control free forging hammer are constructed. Based on the configuration, a single-acting differential servo cylinder system is proposed to drive the follow-up spool valve and then control the motion state of the hammerhead. Furthermore, a non-contact measurement method is adopted to detect the real-time position of the hammerhead, and the installation position of the measuring sensor is isolated from the hammer body and foundation, thereby reducing the influence of vibration and impact on the accuracy of the feedback signal and ensuring the successive forming process of the forging hammer. In addition, a blow energy model of the forging hammer processing system is established, and a fuzzy-PID control scheme for the forging hammer is then adopted. Based on the control strategy, the striking accuracy of the proposed automatic forging hammer is significantly improved compared with the traditional forging hammer. Finally, the method is applied to an 8 MN forging hammer, and the results show its better processing performance than traditional hammers in terms of all indices.


Author(s):  
Hubertus v. Stein ◽  
Heinz Ulbrich

Abstract Due to the elasticity of the links in modern high speed mechanisms, increasing operating speeds often lead to undesirable vibrations, which may render a required accuracy unattainable or, even worse, lead to a failure of the whole process. The dynamic effects e.g. may lead to intolerable deviations from the reference path or even to the instability of the system. Instead of suppressing the vibration by a stiffer design, active control methods may greatly improve the system performance and lead the way to a reduction of the mechanism’s weight. We investigate a four-bar-linkage mechanism and show that by introducing an additional degree of freedom for a controlled actuator and providing a suitable control strategy, the dynamically induced inaccuracies can be substantially reduced. The modelling of the four-bar-linkage mechanism as a hybrid multi body system and the modelling of the complete system (including the actuator) is briefly explained. From the combined feedforward-feedback optimal control approach presented in (v. Stein, Ulbrich, 1998) a time-varying output control law is derived that leads to a very good system performance for this linear discrete time-varying system. The experimental results show the effectiveness of the applied control strategy.


2020 ◽  
Vol 10 (22) ◽  
pp. 7983
Author(s):  
Ge Zhao ◽  
Jian Wang ◽  
Wei Li ◽  
Jinsong Zhu

During the multi-channel confluent water supply process, the pressure control of the main pipe is often held back by such problems as non-linearity, hysteresis and parameter uncertainty, its own unique load dynamic changes, channel switching disturbance and other system characteristics caused by the actual working conditions. Moreover, pressure fluctuations in the main pipe will lead to a reduction in the service life of fire-fighting equipment, an increase in the failure rate, and even an interruption of the fire-fighting water supply. Therefore, a master and auxiliary control strategy is proposed to stabilize the pressure change in the process of multi-channel concentrated water supply switching, by using variable universe fuzzy proportional integral derivative (PID) control as the main controller on the main pipe and traditional PID control as the subsidiary controller on the channel. The control strategy is verified by the co-simulation platforms of LabVIEW and AMESim. Simulation results show that the variable universe fuzzy PID control and the master and auxiliary compound control based on the variable universe fuzzy PID control have advantages in step response, tracking response and anti-interference, respectively. The parameters obtained in the co-simulation are used in the experimental system. The experimental results show that the maximum deviation rate of main pipe pressure can be reduced by about 10% compared with other control methods under different loads. In conclusion, the proposed control strategy has strong anti-interference ability, fast dynamic response speed, high stability and good peak shaving effect.


2012 ◽  
Vol 220-223 ◽  
pp. 402-405
Author(s):  
Li Hong Dong

According to the nonlinearity and time-variation of the positioning control in hydraulic system, a kind of Hybrid Fuzzy-PID Controller with Coupled Rules (HFPIDCR) is proposed. In this control system, the bulk modulus is considered as a variable. The novelty of this controller is to combine the fuzzy logic and PID controllers in a switching condition. Simulation results of the HFPIDCR are compared with the results of traditional PID, Fuzzy Logic Controller (FLC), and Hybrid Fuzzy-PID Controller (HFPID). It is demonstrated that the HFPIDCR has fast response, short adjustment time, high control precision and other advantages, and it can meet the requirements of the positioning control in hydraulic system.


Sign in / Sign up

Export Citation Format

Share Document