scholarly journals Simulation and analysis of the aeroelastic-galloping-based piezoelectric energy harvester utilizing FEM and CFD

2018 ◽  
Vol 159 ◽  
pp. 01052
Author(s):  
Ismoyo Haryanto ◽  
Achmad Widodo ◽  
Toni Prahasto ◽  
Djoeli Satrijo ◽  
Iswan Pradiptya ◽  
...  

Due to a large oscillation amplitude, galloping can be an admissible scenario to actuate the piezoelectric-based energy harvester. In the case of harvesting energy from galloping vibrations, a prismatic bluff body is attached on the free end of a piezoelectric cantilever beam and the oscillation occurs in a plane normal to the incoming flow. The electrical power then can be extracted from the piezoelectric sheet bonded in the cantilever structure due to the dynamic strain. This study is proposed to develop a theoretical model of a galloping-based piezoelectric energy harvester. A FEM procedure is utilized to determine dynamic characteristics of the structure. Whereas the aerodynamic lift and drag coefficients of the tip bluff body are determined using CDF. The results show that the present method gives precise results of the power generated by harvester. It was found that D-section yields the greatest galloping behavior and hence the maximum power.

Author(s):  
Max Spornraft ◽  
Norbert Schwesinger ◽  
Shlomo Berger

Synchronization opens further ways to improve cantilever-based energy harvesting arrays in view of power output, easier rectification and scaling. Objective of this study is to investigate the synchronization behavior of a cantilever-array based energy harvesting systems. Thereby, synchronization is achieved by mechanical coupling through a so-called “overhang”. Nakajima et al. [1] and Wang et al. [2] already verified this principle for the synchronization of two and three cantilevers, but at constant vibrational excitation. Regarding energy harvesting, no application of this method is presently available. In this paper, we investigate the synchronization behavior of a piezoelectric cantilever-line energy harvester in airflow. The design of the energy harvester bases upon a piezoelectric cantilever-line and a common bluff body, arranged upstream. To investigate synchronization of the cantilevers, three commonly available piezoelectric bimorphs were employed to study synchronization. Mounted on a common bluff body, the effect of overhang material and position was studied. Therefore, different constellations were examined by impulse excitation as well as vortex-induced vibration in a wind channel. In several measurements, we found arrangements and parameters allowing for an in-phase synchronization of neighborly cantilevers of the line. The knowledge gained allows for a direct electrical connection of piezoelectric cantilevers with just one single rectifier unit. Cantilevers coupled with overhangs arranged in the right order oscillate with the same frequency and phase, i.e. without any charge cancellations. This knowledge opens ways to develop basic design rules for the synchronization of cantilevers.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Amin Bibo ◽  
Abdessattar Abdelkefi ◽  
Mohammed F. Daqaq

This paper develops and validates an aero-electromechanical model which captures the nonlinear response behavior of a piezoelectric cantilever-type energy harvester under combined galloping and base excitations. The harvester consists of a thin piezoelectric cantilever beam clamped at one end and rigidly attached to a bluff body at the other end. In addition to the vibratory base excitations, the beam is also subjected to aerodynamic forces resulting from the separation of the incoming airflow on both sides of the bluff body which gives rise to limit-cycle oscillations when the airflow velocity exceeds a critical value. A nonlinear electromechanical distributed-parameter model of the harvester under the combined excitations is derived using the energy approach and by adopting the nonlinear Euler–Bernoulli beam theory, linear constitutive relations for the piezoelectric transduction, and the quasi-steady assumption for the aerodynamic loading. The resulting partial differential equations of motion are discretized and a reduced-order model is obtained. The mathematical model is validated by conducting a series of experiments at different wind speeds and base excitation amplitudes for excitation frequencies around the primary resonance of the harvester. Results from the model and experiment are presented to characterize the response behavior under the combined loading.


2015 ◽  
Vol 23 (15) ◽  
pp. 2538-2553 ◽  
Author(s):  
Ahmed Jemai ◽  
Fehmi Najar ◽  
Moez Chafra

The use of a multilayer piezoelectric cantilever beam for vibration-based energy harvesting applications has been investigated as an effective technique to increase the harvested electrical power. It has been shown that the multilayered energy harvester performance is very sensitive to the number of layers and their electrical connection due to impedance variations. The objective of this work is to suggest a comprehensive mathematical model of multilayered unimorph piezoelectric energy harvester allowing analytical solution for the harvested voltage and electrical power. The model is used to deeply investigate the influence of different parameters on the harvested power. A distributed-parameter model of the harvester using the Euler–Bernoulli beam theory and Hamilton's principle is derived. Gauss's law is used to derive the electrical equations for parallel and series connections. A closed-form solution is proposed based on the Galerkin procedure and the obtained results are validated with a finite element 3D model. A parametric study is performed to ascertain the influence of the load resistance, the thickness ratio, the number of piezoelectric layers on the tip displacement and the electrical harvested power. It is shown that this model can be easily used to adjust the geometrical and electrical parameters of the energy harvester in order to improve the system's performances. In addition, it is proven that if one of the system's parameter is not correctly tuned, the harvested power can decrease by several orders of magnitude.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1206 ◽  
Author(s):  
Wei-Jiun Su ◽  
Jia-Han Lin ◽  
Wei-Chang Li

This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency.


Author(s):  
Amin Bibo ◽  
Abdessattar Abdelkefi ◽  
Mohammed F. Daqaq

This paper develops an experimentally validated model of a piezoelectric energy harvester under combined aeroelastic-galloping and base excitations. To that end, an energy harvester consisting of a thin piezoelectric cantilever beam subjected to vibratory base excitation is considered. To permit galloping excitation, a bluff body is rigidly attached at the free end such that a net aerodynamic lift is generated as the incoming airflow separates on both sides of the body giving rise to limit cycle oscillations when the flow velocity exceeds a critical value. A nonlinear electromechanical distributed-parameter model of the harvester under the combined excitation is derived using the energy approach and by adopting the nonlinear Euler-Bernoulli beam theory, linear constitutive relations for the piezoelectric transduction, and the quasi-steady assumption for the aerodynamic loading. The partial differential equations of the system are discretized and a reduced-order-model is obtained. The mathematical model is validated by conducting a series of experiments with different loading conditions represented by wind speed, base excitation amplitude, and excitation frequency around the primary resonance.


Author(s):  
Hu¨seyin Dog˘us¸ Akaydın ◽  
Niell Elvin ◽  
Yiannis Andreopoulos

In the present experimental work, we explore the possibility of using piezoelectric based fluid flow energy harvesters. These harvesters are self-excited and self-sustained in the sense that they can be used in steady uniform flows. The configuration consists of a piezoelectric cantilever beam with a cylindrical tip body which promotes sustainable, aero-elastic structural vibrations induced by vortex shedding and galloping. The structural and aerodynamic properties of the harvester alter the vibration amplitude and frequency of the piezoelectric beam and thus its electrical output. This paper presents results of energy-harvesting tests with one configuration of such a self-excited piezoelectric harvester using a PZT bimorph. In addition to the electrical voltage output, the strain on the surface of beam close to its clamped tip was also measured The measured strain and voltage output were perfectly correlated in the frequency range containing the first natural mode of vibration of the system. It was observed that about 0.24 mW of electrical power can be attained with this harvester in a uniform flow of 28 m/s.


2018 ◽  
Vol 8 (12) ◽  
pp. 2609 ◽  
Author(s):  
Xiaobo Rui ◽  
Yibo Li ◽  
Yue Liu ◽  
Xiaolei Zheng ◽  
Zhoumo Zeng

Piezoelectric energy harvesting is a promising way to develop self-sufficient systems. Structural design and parameter optimization are key issues to improve the performance in applications. This paper presents a magnetic coupled piezoelectric energy harvester to increase the output and bandwidth. A lumped parameter model considering the static position is established and various modes are simulated. This paper focuses on the “Low frequency repulsion mode”, which is more practical. The experiment platform is built with the Macro Fiber Composite (MFC) material, and the results are consistent with the analytical simulation. The optimization process of some key parameters, such as magnets spacing and flux density, is carried out. The results show that there is a corresponding optimal spacing for each flux density, which is positive correlated. With the optimized parameter design, the system achieves peak electrical power of 3.28 mW under the harmonic excitation of 4 m/s2. Compared with the conventional single cantilever harvester, the operated bandwidth is increased by 66.7% and the peak output power is increased by 35.0% in experiment.


Author(s):  
P. B. Jain ◽  
M. R. Cacan ◽  
S. Leadenham ◽  
C. De Marqui ◽  
A. Erturk

The harvesting of flow energy by exploiting aeroelastic and hydroelastic vibrations has received growing attention over the last few years. The goal in this research field is to generate low-power electricity from flow-induced vibrations of scalable structures involving a proper transduction mechanism for wireless applications ranging from manned/unmanned aerial vehicles to civil infrastructure systems located in high wind areas. The fundamental challenge is to enable geometrically small flow energy harvesters while keeping the cut-in speed (lowest flow speed that induces persistent oscillations) low. An effective design with reduced cut-in speed is known to be the T-shaped cantilever arrangement that consists of a horizontal piezoelectric cantilever with a perpendicular vertical beam attachment at the tip. The direction of incoming flow is parallel to the horizontal cantilever and perpendicular to the vertical and symmetric tip attachment. Vortex-induced vibration resulting from flow past the tip attachment is the source of the aeroelastic response. For a given width of the T-shaped harvester with fixed thickness parameters, an important geometric parameter is the length ratio of the tip attachment to the cantilever. In this paper we investigate the effect of this geometric parameter on the piezoaeroelastic response of a T-shaped flow energy harvester. A controlled desktop wind tunnel system is used to characterize the electrical and mechanical response characteristics for broad ranges of flow speed and electrical load resistance using different vertical tip attachment lengths for the same horizontal piezoelectric cantilever. The variations of the electrical power output and cut-in speed with changing head length are reported along with an investigation into the electroaeroelastic frequency response spectra.


Author(s):  
Ali H. Alhadidi ◽  
Amin Bibo ◽  
Mohammed F. Daqaq

This ppppaper examines the performance of a galloping energy harvester possessing a nonlinear restoring force. To achieve this goal, a flow energy harvester consisting of a piezoelectric cantilever beam augmented with a square-sectioned bluff body at the free end is considered. Two magnets located near the tip of the bluff body are used to introduce the nonlinearity which strength and nature can be altered by changing the distance between the magnets. A lumped-parameter aero-electromechanical model adopting the quasi-steady assumption for aerodynamic loading is presented and utilized to numerically simulate the harvester’s response. Wind tunnel tests are also performed to validate the numerical simulations by conducting upward and downward wind velocity sweeps. Results comparing the relative performance of several harvesters with potential functions of different shapes demonstrate that a mono-stable potential function with a hardening restoring force can outperform all other configurations.


Author(s):  
Paulo S. Varoto ◽  
Andreza T. Mineto

It is known that the best performance of a given piezoelectric energy harvester is usually limited to excitation at its fundamental resonance frequency. If the ambient vibration frequency deviates slightly from this resonance condition then the electrical power delivered is drastically reduced. One possible way to increase the frequency range of operation of the harvester is to design vibration harvesters that operate in the nonlinear regime. The main goal of this article is to discuss the potential advantages of introducing nonlinearities in the dynamics of a beam type piezoelectric vibration energy harvester. The device is a cantilever beam partially covered by piezoelectric material with a magnet tip mass at the beam’s free end. Governing equations of motion are derived for the harvester considering the excitation applied at its fixed boundary. Also, we consider the nonlinear constitutive piezoelectric equations in the formulation of the harvester’s electromechanical model. This model is then used in numerical simulations and the results are compared to experimental data from tests on a prototype. Numerical as well as experimental results obtained support the general trend that structural nonlinearities can improve the harvester’s performance.


Sign in / Sign up

Export Citation Format

Share Document