scholarly journals Possibility of reusing Al-Machraya River for feeding Hawizeh marsh

2018 ◽  
Vol 162 ◽  
pp. 03004 ◽  
Author(s):  
Mahmoud Al-Khafaji ◽  
Hayder Al Thamiry ◽  
Ala Al-Saedi

Al Machraya River was considered as one of the water feeders of Hawizeh Marsh. In 1986, the outlet of this river into the marsh was blocked and the river was used as a main channel for the East Tigris Irrigation Project near Kalat Salih. This causes significant decrease in the available water supply sources, deterioration in the water quality distribution patterns and increasing the stagnation areas within the marsh. This research aims to study the possibility of reusing this river for feeding Hawizeh Marsh. A frequency analysis study was carried out to study the maximum and minimum probable water level (MMPWL) of Tigris River at the upstream of Kalat Salih Barrage. Six statistical models; Normal distribution, Log-Normal type II, Log-Normal type III, Pearson type III, Log- Pearson type III and Gumbel type I distribution were used to estimate the MMPWL. The results show that Pearson type III and Gumbel type I distribution models are the best to fit the maximum and minimum daily water level (WL), respectively, at the upstream of the Barrage. The estimated MMPWL were compared to the required WL in Hawizeh Marsh. The difference between Tigris River and Hawizeh Marsh water levels were found to be not operative to cause a significant flow toward the marsh. Therefore, Al Machraya River cannot be used to feed Hawizeh Marsh.

Agrologia ◽  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Rafael M. Osok ◽  
Silwanus M. Talakua ◽  
Alfredo Manusama ◽  
Pieter J. Kunu
Keyword(s):  
Type Iii ◽  

ABSTRAKKarakteristik morfometri penting untuk memahami proses hidrologis  pada suatu DAS. Tujuan penelitian ini (1) mengkaji karakteristik morfometri DAS Way Apu, (2) menganalisis debit banjir rencana dan hidrograf satuan untuk mendukung perencanaan pengembangan bangunan air di DAS Way Apu. Analisis data meliputi karakteristik lahan morfometri DAS, dan hidrologi DAS. Distribusi frekuensi hujan dihitung dengan metode Log-Pearson Type III, Gumbel, Normal, Log-Normal. Hujan dan debit rencana dihitung dengan kala ulang 2, 5, 10, 25, 50, dan 100 tahun untuk masing-masing metode. Debit banjir rencana dihitung dengan metode Rasional, sedangkan model unit hidrograf DAS Way Apu dihitung dengan  metode Nakayasu. Hasil penelitian menunjukkan bahwa bentuk DAS kategori lonjong atau memanjang, dengan 4 orde sungai, pola aliran dendritik, dan kemiringan sungai kecil. Curah hujan rencana untuk periode ulang 2, 5, 10, 20, 25, 50 dan 100 tahun berkisar 37,59 – 185,14 mm (Log Pearson Type  III), 41,32 – 180,28 mm (Gumbel), 47,68 – 139,98 mm (Normal), dan 36,82 – 203,66 mm (Log-Normal). Hasil uji Smornov-Kolmogorof menunjukkan bahwa metode Log-Pearson Type III, Gumbel, dan Log-Normal dapat digunakan untuk perhitungan debit banjir rencana. Data debit banjir rencana Gumbel dapat digunakan untuk umur bangunan air 25 tahun, sedangkan bila bangunan airnya dibangun untuk umur 100 tahun, Log-Normal lebih cocok. Berdasarkan Hidrograf Satuan Sintetik Nakayasu, kapasitas tampung DAS Way Apu adalah 21,37 m3/dtk, dan kondisi ini tidak mampu menampung debit banjir yang terjadi.Kaca Kunci: Karakteristik morfometri DAS, debit banjir rencana, DAS Way Apu


2020 ◽  
Vol 12 (24) ◽  
pp. 10654
Author(s):  
Wenwen Tan ◽  
Li Sun ◽  
Xinhou Zhang ◽  
Changchun Song

Zonation along a water level is the main spatial distribution characteristic of wetland plants. This is mainly because of the influences of hydrological conditions and interspecific competition, which finally narrow the fundamental niche of a species to its realized niche. In the present study, a controlled experiment was conducted in order to analyze the relationship between Carex lasiocarpa/Carex pseudocuraica and Glyceria spiculosa, in conditions of three competitive treatments at four water levels. The results showed that in no competition, C. lasiocarpa preferred low water levels, but this preference receded when competing with G. spiculosa. In contrast, C. pseudocuraica had greater preference for low water level when competing with G. spiculosa. The root/shoot ratios of the two Carex species decreased with increasing water levels, but they were almost unaffected by different competition treatments. With the increase in water level during full competition with G. spiculosa, the competitive ability of C. lasiocarpa showed an increasing trend, whereas a contrary trend was observed in C. pseudocuraica. Our results suggested the effects of water levels and their interactions with interspecific competition varied between the two Carex species and played an important role in determining spatial distribution patterns and potential community succession of wetland plants.


2021 ◽  
Author(s):  
Dame Tadesse ◽  
Venkata Suryabhagavan Karuturi ◽  
Dessie Nedaw

Abstract Flood is one of the natural disasters that affect societies around the world. Every year, flood claims hundreds of human lives and causes damage to the global economy and environment. Consequently, the identification of flood-vulnerable areas is important for comprehensive flood risk management. This study aims to delineate flood hazard areas in Itang District of Gambella Region, Ethiopia, applying the Gumbel probability distribution and Analytical Hierarchy Process (AHP) method. Distribution models applied in the study involve the generalized extreme value, Gumbel, Log-Normal, and Log Pearson type III. The Gumbel distribution provides the best fit according to the extreme value analyses. After obtaining discharge level through the method, the region's flood inundation area was mapped at 5, 10, 25, 50, and 100-year recurrence intervals. The developed methodology processes six parameters, namely, slope, elevation, land-use/land-cover, rainfall, discharge, and soil. Each criterion was evaluated with the aid of AHP and mapped by GIS. Data were assorted into five suitability classes, viz., very high, high, moderate, low, and very low flooding areas, representing 29.7%, 27.8%, 18.5%, 12.7%, and 11.4%, respectively. The outcome is extremely useful for evacuation planning, damage assessment, and losses estimation, thereby minimizing the natural disaster's effect in the study area.


Author(s):  
Itolima Ologhadien

Flood frequency analysis is a crucial component of flood risk management which seeks to establish a quantile relationship between peak discharges and their exceedance (or non-exceedance) probabilities, for planning, design and management of infrastructure in river basins. This paper evaluates the performance of five probability distribution models using the method of moments for parameter estimation, with five GoF-tests and Q-Q plots for selection of best –fit- distribution. The probability distributions models employed are; Gumbel (EV1), 2-parameter lognormal (LN2), log Pearson type III (LP3), Pearson type III(PR3), and Generalised Extreme Value( GEV). The five statistical goodness – of – fit tests, namely; modified index of agreement (Dmod), relative root mean square error (RRMSE), Nash – Sutcliffe efficiency (NSE), Percent bias (PBIAS), ratio of RMSE and standard deviation of the measurement (RSR) were used to identify the most suitable distribution models. The study was conducted using annual maximum series of nine gauge stations in both Benue and Niger River Basins in Nigeria. The study reveals that GEV was the best – fit distribution in six gauging stations, LP3 was best – fit distribution in two gauging stations, and PR3 is best- fit distribution in one gauging station. This study has provided a significant contribution to knowledge in the choice of distribution models for predicting extreme hydrological events for design of water infrastructure in Nigeria. It is recommended that GEV, PR3 and LP3 should be considered in the development of regional flood frequency using the existing hydrological map of Nigeria.


2018 ◽  
Vol 3 (01) ◽  
pp. 100-104
Author(s):  
J. Kumar ◽  
R. Suresh ◽  
Jyoti .

In present study an attempt has been made to evaluate the suitable probability distribution models for predicting 1, 2, 3, 4, 5, 6 and 7-days annual maximum rainfall amounts based on 39 years (1964 to 2002) daily rainfall data. Three probability distribution models namely: Log Normal distribution, Log Pearson Type-III distribution and Gumbel distribution models were considered to evaluate their goodness of fit. The Weibull’s method was used for computation of observed rainfall values at1, 5, 20, 30, 50, 95 and 99 percent probability levels. The Log Pearson type –III distribution was found suitable for 1 and 2 days maximum annual rainfall, while Gumbel distribution was found to be the best for predicting 3, 4, 5, 6 and 7- days annual maximum rainfall amounts. The relationships between annual maximum rainfall and return periods were also developed. The non – linear relationships (i.e. logarithmic) were found to be most suitable for all the cases.


2020 ◽  
Vol 12 (2) ◽  
pp. 83-90
Author(s):  
Agam Sanjaya

ANALISIS DEBIT PUNCAK SUNGAI LUBUK BANYAU KABUPATEN BENGKULU UTARA DENGAN MENGGUNAKANMETODE HIDROGRAF SATUAN SINTETIK Agam Sanjaya I1), Khairul Amri II2), Muhammad Fauzi III3) 1) 2) 3)Jurusan Teknik Sipil, Fakultas Teknik UNIB Jl. W.R. Supratman, Kandang Limun, Kota Bengkulu 38371, Telp. (0736)344087e-mail: [email protected], [email protected] , [email protected] aliran sungai (DAS) Sungai Lubuk banyau merupakan salah satu DAS yang berada di Bengkulu Utara. DAS Sungai Lubuk banyau mengalir dari daerah hulu yang terletak diwilayah Kabupaten Bengkulu utara. Tujuan dari penelitian ini adalah menganalisa debit puncak rencana akibat intensitas curah hujan pada DAS Lubuk Banyau dalam menganalisis hidrologi dengan menggunakan metode Hidograf Satuan Sintetik (HSS) Gama I, HSS Nakayasu dan HSS Snyder. Berdasarkan hasil perhitungan dari penelitian ini distribusi frekuensi terhadap tiga metode curah hujan, yaitu metode ditribusi Gumbel Tipe I, Log Pearson Tipe III dan Log Normal maka metode yang digunakan untuk perhitungan curah hujan rencana pada penelitian ini adalah Metode Gumbel Tipe I dengan periode ulang 2, 5, 10, 25, 50 dan 100 tahun, yaitu 181,164 mm, 275,356 mm, 337,709 mm, 416,518 mm, 474,974 mm dan 532,998 mm. Dari hasil analisis hidrologi pada penelitian diperoleh debit puncak pada DAS Lubuk Banyau untuk periode ulang 100 tahun dengan metode HSS Snyder adalah 1531,111 m3/detik dengan waktu puncak sebesar 5 jam merupakan debit puncak yang paling besar diantara HSS Gama I dan Nakayasu. untuk hasil debit puncak dengan metode HSS Gama I adalah 776,91m3/detik dengan waktu puncak sebesar 4 jam dan HSS Nakayasu 1023,87 dengan waktu puncak 2,46 jam. Maka didapatkan tinggi permukaan air pada DAS Lubuk Banyau yaitu 1,134 m.Kata kunci: hidrograf satuan sintetik, debit puncak, gama I, nakayasu, dan snyderAbstractWatershed Lubuk Banyau is one of the watersheds in North Bengkulu. The Lubuk River watershed flows from the upstream area located in the northern Bengkulu regency. The purpose of this study is to analyze the planned peak discharge due to rainfall intensity in the Lubuk Banyau watershed in analyzing hydrology using the Synthetic Unit Hydrograph (HSS) method of Gama I, HSS Nakayasu and HSS Snyder. Based on the results of calculations from this study the frequency distribution of three rainfall methods, namely the Gumbel Type I distribution method, Pearson Type III Log and Normal Log, the method used for calculating the planned rainfall in this study is the Gumbel Type I method with a return period of 2, 5, 10, 25, 50 and 100 years, namely 181,164 mm, 275,356 mm, 337,709 mm, 416,518 mm, 474,974 mm and 532,998 mm. From the results of the hydrological analysis in the study, the peak discharge in the Lubuk Banyau watershed for a 100-year return period with the Snyder HSS method was 1531,111 m3 / second with a peak time of 5 hours being the largest peak discharge between Gama I and Nakayasu HSS. for the peak discharge using the HSS Gama I method is 776.91m3 / sec with a peak time of 4 hours and Nakayasu HSS of 1023.87 with a peak time of 2.46 hours. Then the water level obtained at the Lubuk Banyau watershed is 1,134 m.Keywords: synthetic unit hydrograph, peak discharge gama I, nakayasu, and snyder.


2020 ◽  
Vol 15 (7) ◽  
pp. 1025-1039
Author(s):  
Shakti P. C. ◽  
Mamoru Miyamoto ◽  
Ryohei Misumi ◽  
Yousuke Nakamura ◽  
Anurak Sriariyawat ◽  
...  

The Chao Phraya River Basin is one of the largest in Asia and is highly vulnerable to water-related disasters. Based on rainfall gauge data over 36 years (1981–2016), a frequency analysis was performed for this basin to understand and evaluate its overall flood risk; daily rainfall measurements of 119 rain gauge stations within the basin were considered. Four common probability distributions, i.e., Log-Normal (LOG), Gumbel type-I (GUM), Pearson type-III (PE3), and Log-Pearson type-III (LP3) distributions, were used to calculate the return period of rainfall at each station and at the basin-scale level. Results of each distribution were compared with the graphical Gringorten method to analyze their performance; GUM was found to be the best-fitted distribution among the four. Thereafter, design hyetographs were developed by integrating the return period of rainfall based on three adopted methods at basin and subbasin scales; each method had its pros and cons for hydrological applications. Finally, utilizing a Rainfall-Runoff-Inundation (RRI) model, we estimated the possible flood inundation extent and depth, which was outlined over the Chao Phraya River Basin using the design hyetographs with different return periods. This study can help enhance disaster resilience at industrial complexes in Thailand for sustainable growth.


2021 ◽  
Vol 004 (02) ◽  
pp. 127-140
Author(s):  
Putri Mayasari ◽  
Freddy Ilfan ◽  
Yasdi Yasdi ◽  
Rimba Rimba

Jambi River is one of the rivers located in the Muaro Jambi Temple Complex Area, Muaro Jambi Regency, Jambi Province. Muaro Jambi Temple is one of the tourist attractions in Jambi Province. This study aims to find the capacity of Jambi River tested by planned flood discharge utilizing (synthetic unit hydrograph) HSS Nakayasu method for a return period of two, five, ten, twenty-five, fifty and hundred years. HEC-RAS software used to analyse the water level in the Jambi River towards the flood potential that causes the submerging of the Kedaton Temple building. This research used the log Pearson type III method to calculate the planned rain return period and used the Nakayasu synthetic unit method to calculate the planned flood discharge. The analysis showed that the Jambi River could not load the flood discharge in the five, ten, twenty-five, fifty, and one hundred years return period at several measurement points: river sta-1, river sta-2 and river sta-5. The floodwater level did not cause the Kedaton Temple building to be flooded from the simulation result


2021 ◽  
Vol 6 (2) ◽  
pp. 107-117
Author(s):  
Itolima Ologhadien

The choice of optimum probability distribution model that would accurately simulate flood discharges at a particular location or region has remained a challenging problem to water resources engineers. In practice, several probability distributions are evaluated, and the optimum distribution is then used to establish the quantile - probability relationship for planning, design and management of water resources systems, risk assessment in flood plains and flood insurance. This paper presents the evaluation of five probability distributions models: Gumbel (EV1), 2-parameter lognormal (LN2), log pearson type III (LP3), Pearson type III(PR3), and Generalised Extreme Value (GEV) using the method of moments (MoM) for parameter estimation and annual maximum series of five hydrological stations in the lower Niger River Basin in Nigeria. The choice of optimum probability distribution model was made on five statistical goodness – of – fit measures; modified index of agreement (Dmod), relative root mean square error (RRMSE), Nash – Sutcliffe efficiency (NSE), Percent bias (PBIAS), ratio of RMSE and standard deviation of the measurement (RSR), and probability plot correlation coefficient (PPCC). The results show that GEV is the optimum distribution in 3 stations, and LP3 in 2 stations. On the overall GEV is the best – fit distribution, seconded by PR3 and thirdly, LP3. Furthermore, GEV simulated discharges were in closest agreement with the observed flood discharges. It is recommended that GEV, PR3 and LP3 should be considered in the final selection of optimum probability distribution model in Nigeria.


2011 ◽  
Vol 20 (4) ◽  
Author(s):  
M. Maksimović ◽  
S. Vidojević ◽  
A. Zaslavsky

AbstractWe have modeled electrostatic Langmuir waves by an electric field, consisting of superposition of Gaussian wave packets with several probability distributions of amplitudes and with several Poisson distributions of wave packets. The outcome of the model is that the WIND satellite observations, especially in the low frequency domain (the WAVES experiment), do not allow to conclude whether the input wave amplitude distributions are closer to the log-normal than to the Pearson type I or uniform. The average number of wave packets in 1 s is found to be between 0.1 and 50. Therefore, there is a clear need to measure Langmuir wave energy distributions directly at the waveform level, not a posteriori in the spectral domain. This is planned to be implemented on the RPW (Radio and Plasma Wave Analyzer) instrument in the Solar Orbiter mission.


Sign in / Sign up

Export Citation Format

Share Document